Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

IA ayuda a optimizar la dosis de radiación de rayos X en tomografía computarizada

Por el equipo editorial de MedImaging en español
Actualizado el 16 Mar 2023
Print article
Imagen: Investigadores de Italia han desarrollado y entrenado modelos basados ​​en la red neuronal para analizar las imágenes de TC (Fotografía cortesía de la Universidad de Florencia)
Imagen: Investigadores de Italia han desarrollado y entrenado modelos basados ​​en la red neuronal para analizar las imágenes de TC (Fotografía cortesía de la Universidad de Florencia)

La tomografía computarizada (TC) es una herramienta de diagnóstico muy eficaz y extensa utilizada por la medicina moderna. Desafortunadamente, existe una preocupación creciente con respecto a la cantidad cada vez mayor de pacientes que se someten a tomografías computarizadas y la cantidad considerable de radiación de rayos X a la que están expuestos. El principio ALARA, comúnmente conocido como "tan bajo como sea razonablemente posible", implica que un paciente debe recibir el beneficio de diagnóstico más significativo con una exposición mínima a la radiación. En términos prácticos, este principio requiere una solución intermedia, ya que la disminución del nivel de radiación administrada generalmente da como resultado una calidad de imagen de TC más pobre. En consecuencia, los profesionales médicos deben lograr un equilibrio entre obtener alta calidad de imágenes de TC y minimizar la exposición del paciente a los rayos X para reducir el riesgo de un diagnóstico erróneo.

Para lograr un equilibrio entre la calidad de la imagen y la exposición a la radiación durante las TC, los profesionales de la salud, incluidos los radiólogos, pueden emplear una estrategia de optimización. Primero, observan imágenes reales generadas por el tomógrafo para identificar anomalías como tumores o tejido inusual. Luego se utilizan métodos estadísticos para calcular la dosis de radiación óptima y la configuración del tomógrafo. Este procedimiento se puede generalizar mediante la adopción de imágenes de TC de referencia obtenidas al escanear fantasmas especialmente diseñados que contienen insertos de diferentes tamaños y contrastes, que representan anomalías estandarizadas. Sin embargo, el análisis manual de imágenes requiere mucho tiempo. Para abordar este problema, un equipo de investigadores de la Universidad de Florencia (Florencia, Italia), en colaboración con radiólogos y físicos médicos, examinó si este proceso podría automatizarse mediante el uso de inteligencia artificial (IA). El equipo creó y entrenó un algoritmo, un "observador modelo", basado en redes neuronales convolucionales (CNN), que podría analizar las anomalías estandarizadas en las imágenes de TC con la misma eficiencia que un profesional.

El equipo necesitaba suficientes datos de entrenamiento y de prueba para su modelo, para lo cual 30 profesionales de la salud examinaron visualmente 1.000 imágenes de TC en un fantasma que imitaba el tejido humano. El fantasma contenía insertos cilíndricos de diferentes diámetros y contrastes, y los observadores tenían que identificar si un objeto estaba presente en la imagen e indicar el nivel de confianza en su evaluación. Esto generó un conjunto de datos de 30.000 imágenes de TC etiquetadas capturadas mediante varias configuraciones de reconstrucción tomográfica, que reflejan con precisión la interpretación humana. Luego, el equipo implementó dos modelos de IA basados en diferentes arquitecturas, UNet y MobileNetV2, y modificó el diseño base de estas arquitecturas para permitirles realizar tanto la clasificación ("¿Hay un objeto inusual en la imagen de TC?") como la localización ("¿Dónde está el objeto inusual?"). Luego, los modelos se entrenaron y probaron utilizando imágenes del conjunto de datos.

El equipo de investigación realizó análisis estadísticos para evaluar varias métricas de desempeño para garantizar que los observadores del modelo emularan con precisión cómo un humano evaluaría las imágenes de TC del fantasma. Los investigadores son optimistas de que, con más esfuerzos, su modelo puede convertirse en un mecanismo viable para la evaluación automatizada de la calidad de la imagen de la TC. Confían en que la aplicación de sus observadores de modelo de IA a mayor escala permitirá evaluaciones de TC más rápidas y seguras que nunca.

“Nuestros resultados fueron muy prometedores, ya que ambos modelos entrenados funcionaron notablemente bien y lograron un porcentaje de error absoluto de menos del 5 %”, dijo la Dra. Sandra Doria, del Departamento de Física de la Universidad de Florencia, quien dirigió el equipo de investigación. "Esto indicó que los modelos podían identificar el objeto insertado en el fantasma con una precisión y confianza similares a las de un profesional humano, para casi todas las configuraciones de reconstrucción y tamaños y contrastes de anomalías".

Enlaces relacionados:
Universidad de Florencia  

New
Proveedor de oro
Conductive Gel
Tensive
New
Image Sharing Platform
CareRad
New
X-Ray Film Illuminator
Vista Series 3-Bank
New
Mobile DR System
Compact

Print article
FIME - Informa
Radcal

Canales

Radiografía

ver canal
Imagen: Los cristales de BiOI similares al rubí pueden mejorar la seguridad de las imágenes médicas al reducir las intensidades de los rayos X dañinos (Fotografía cortesía de la Universidad de Cambridge)

Material de celdas solares sostenible podría revolucionar imágenes médicas

El uso de rayos X para obtener imágenes internas del cuerpo ha cambiado drásticamente los diagnósticos médicos no invasivos. Sin embargo, la alta dosis de rayos X requerida... Más

RM

ver canal
Imagen: La IA Ezra Flash ha recibido la autorización 510 (k) de la FDA, lo que permite el despliegue de la primera resonancia magnética del cuerpo completo de 30 minutos del mundo (Fotografía cortesía de Ezra)

Primera resonancia magnética de cuerpo completo de 30 minutos del mundo ofrece diagnóstico de cáncer rápido, preciso y asequible

Una solución de inteligencia artificial (IA) de vanguardia mejora la calidad de la imagen de RM, allanando el camino para una reducción en el tiempo de escaneo y, en consecuencia, el costo... Más

Ultrasonido

ver canal
Imagen: Unir microburbujas a los macrófagos puede crear imágenes de seguimiento sensibles y de alta resolución útiles para el diagnóstico de enfermedades (Fotografía cortesía del Instituto de Tecnología de Georgia)

Ultrasonido puede obtener imágenes de células inmunitarias mejoradas con microburbujas para diagnosticar cáncer en etapa temprana

Los macrófagos, un tipo de glóbulo blanco, protegen el cuerpo humano al rodear y consumir partículas extrañas como bacterias, virus y células muertas. En particular,... Más

Medicina Nuclear

ver canal
Imagen: Un nuevo método de imagen ofrece potencial para diagnosticar, estadificar y tratar múltiples tipos de cáncer (Fotografía cortesía de SNMMI)

Nuevo método de imagen es superior para diagnósticar múltiples tipos de cáncer

Los fibroblastos asociados con el cáncer juegan un papel importante en el desarrollo, la migración y la progresión del tumor. Un subconjunto de estos fibroblastos expresa la proteína... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Se espera que el mercado global de soluciones de imágenes médicas habilitadas para IA alcance los 1.836 millones de dólares en 2032 (Fotografía cortesía de Freepik)

Mercado mundial de soluciones de imágenes médicas habilitadas por IA impulsado por necesidad de detección temprana de enfermedades

El mercado de soluciones de imágenes médicas habilitadas por IA se encuentra actualmente en sus etapas de desarrollo, siguiendo el importante papel de las herramientas basadas en IA para... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.