Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA fusiona TC y RM para mejorar diagnóstico clínico

Por el equipo editorial de MedImaging en español
Actualizado el 06 Jul 2023
Print article
Imagen: Una técnica combina imágenes de estructuras óseas duras de tomografía computarizada con detalles de tejido suave de la imagen de resonancia magnética (Fotografía cortesía de Freepik)
Imagen: Una técnica combina imágenes de estructuras óseas duras de tomografía computarizada con detalles de tejido suave de la imagen de resonancia magnética (Fotografía cortesía de Freepik)

La tomografía computarizada (TC) utiliza tecnología de rayos X para tomar imágenes transversales detalladas del cuerpo, que luego se convierten en una visualización 3D de las estructuras óseas que son opacas a los rayos X. Por otro lado, la resonancia magnética nuclear (RMN) utiliza potentes campos magnéticos y ondas de radio para generar imágenes precisas de tejidos blandos como órganos o tejidos dañados. La combinación de estas dos técnicas podría ofrecer a los profesionales de la salud una visión más holística de la anatomía de un paciente, descubriendo aspectos ocultos de sus problemas de salud. Ahora, una nueva investigación ha demostrado cómo se puede utilizar la inteligencia artificial (IA) para combinar imágenes de tomografías computarizadas y resonancias magnéticas clínicas.

El nuevo método, conocido como Dual-Branch Generative Adversarial Network (Red adversaria generativa de doble rama, DBGAN), ha sido desarrollado por investigadores de la Universidad Queen Mary de Londres (Londres, Reino Unido) y la Universidad Tecnológica Shandong (Zibo, China) y tiene el potencial de permitir una interpretación más clara clínicamente más valiosa de las tomografías computarizadas y las resonancias magnéticas. Esta técnica fusiona de manera efectiva las estructuras óseas rígidas de la tomografía computarizada con las imágenes detalladas de los tejidos blandos de la resonancia magnética. Este desarrollo podría mejorar el diagnóstico clínico y la atención del paciente para una cantidad de condiciones en las que dichas imágenes se usan comúnmente pero presentan limitaciones cuando se usan por separado.

DBGAN es un enfoque avanzado de IA basado en algoritmos de aprendizaje profundo, que presenta una estructura de doble rama con múltiples generadores y discriminadores. Los generadores producen imágenes fusionadas que combinan las características clave e información adicional de las tomografías computarizadas y las resonancias magnéticas. Los discriminadores evalúan la calidad de las imágenes generadas comparándolas con imágenes reales y filtrando las de menor calidad hasta lograr una fusión de alta calidad. Esta interacción adversa generativa entre generadores y discriminadores permite la fusión eficiente y realista de imágenes de TC y RM, minimizando los artefactos y maximizando la información visual.

La naturaleza dual de DBGAN incluye un módulo de extracción multiescala (MEM) que se enfoca en extraer características clave e información detallada de las tomografías computarizadas y resonancias magnéticas y un módulo de autoatención (SAM) que destaca las características más relevantes y únicas en las imágenes fusionadas. Las pruebas exhaustivas del método DBGAN han demostrado que su rendimiento es superior en comparación con las técnicas existentes en términos de calidad de imagen y precisión diagnóstica. Dado que las tomografías computarizadas y las resonancias magnéticas tienen sus propias fortalezas y debilidades, la aplicación de la IA puede ayudar a los radiógrafos a combinar sinérgicamente ambos tipos de imágenes, maximizando sus fortalezas y eliminando sus debilidades.

Enlaces relacionados:
Universidad Queen Mary de Londres  
Universidad de Tecnología de Shandong

New
Proveedor de oro
Electrode Solution and Skin Prep
Signaspray
Proveedor de oro
Ultrasound System
FUTUS LE
New
Mobile Radiographic System
XJET
New
Mammography Diagnostic Station
Mammo Module

Print article
Radcal

Canales

Radiografía

ver canal
Imagen:  INSIGHT CXR de Lunit detecta 10 hallazgos radiológicos anormales con una precisión del 97-99 % (Fotografía cortesía de Lunit)

Software de detección de lesiones basado en IA detecta nódulos pulmonares incidentales en radiografías de tórax

En el campo de la radiología, la inteligencia artificial (IA) ha logrado avances significativos, particularmente en el desarrollo de software de detección de lesiones basado en IA para r... Más

RM

ver canal
Imagen: Los investigadores están utilizando radioterapia guiada por resonancia magnética que combina resonancia magnética diaria con radioterapia (Fotografía cortesía de Sylvester)

Técnica de IA rastrea automáticamente tumores en grandes conjuntos de datos de resonancia magnética para guiar tratamiento del glioblastoma en tiempo real

El tratamiento del glioblastoma, un cáncer cerebral agresivo y prevalente, implica el uso de radioterapia guiada por imágenes de tomografía computarizada. Si bien este método... Más

Ultrasonido

ver canal
Imagen: El nuevo parche de ultrasonido puede medir qué tan llena está la vejiga (Fotografía cortesía del MIT)

Parche de ultrasonido diseñado para monitorear la salud de la vejiga y riñones podría permitir diagnóstico más temprano del cáncer

La disfunción de la vejiga y los problemas de salud relacionados afectan a millones de personas en todo el mundo. Monitorear el volumen de la vejiga es crucial para evaluar la salud de los riñones.... Más

Medicina Nuclear

ver canal
Imagen: Un novedoso radiotrazador PET facilita la detección temprana y no invasiva de la EII (Fotografía cortesía de Karmanos)

Nuevo radiotrazador PET ayuda a detectar de forma temprana y no invasiva la enfermedad inflamatoria intestinal

La enfermedad inflamatoria intestinal (EII), que incluye la enfermedad de Crohn y la colitis ulcerosa, es una afección inflamatoria del tracto gastrointestinal que padecen aproximadamente a siete... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Los asistentes pueden descubrir productos y tecnología innovadores en las Exhibiciones Técnicas de RSNA 2023 (Fotografía cortesía de RSNA)

Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más

La 109.ª Asamblea Científica y Reunión Anual de la Sociedad Radiológica de América del Norte (RSNA, Oak Brook, IL, EUA), que se celebrará en Chicago del 26 al 30... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.