Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nuevos sistemas de puntuación aumentan precisión de informes de radiología generados por IA

Por el equipo editorial de MedImaging en español
Actualizado el 20 Aug 2023
Print article
Imagen: Los científicos han diseñado una nueva forma de calificar la precisión de los informes de radiología generados por IA (Fotografía cortesía de Freepik)
Imagen: Los científicos han diseñado una nueva forma de calificar la precisión de los informes de radiología generados por IA (Fotografía cortesía de Freepik)

Las herramientas de inteligencia artificial (IA) que producen de manera eficiente informes narrativos detallados de tomografías computarizadas o radiografías pueden aligerar significativamente la carga de trabajo de los atareados radiólogos. Estos informes de IA van más allá de la simple identificación de anomalías y, en cambio, proporcionan información de diagnóstico compleja, descripciones detalladas, hallazgos matizados y grados apropiados de incertidumbre, de manera similar a cómo los radiólogos humanos describen los resultados de las exploraciones. Si bien han surgido varios modelos de IA capaces de generar informes de imágenes médicas tan detallados, según un nuevo estudio, los sistemas de puntuación automatizados destinados a evaluar estas herramientas están demostrando ser menos efectivos para medir su rendimiento.

En el estudio, los investigadores de la Facultad de Medicina de Harvard (Boston, MA, EUA) probaron varias métricas de puntuación en informes narrativos generados por IA y seis radiólogos humanos leyeron estos informes. El análisis reveló que los sistemas de puntuación automatizados se desempeñaron de manera deficiente en comparación con los radiólogos humanos cuando se trataba de evaluar los informes generados por IA. Estos sistemas malinterpretaron e incluso pasaron por alto errores clínicos significativos cometidos por la herramienta de IA. Garantizar la confiabilidad de los sistemas de puntuación es crucial para que las herramientas de IA continúen mejorando y ganando la confianza de los médicos. Sin embargo, las métricas probadas en el estudio no lograron identificar de manera confiable los errores clínicos en los informes de IA, lo que destaca una necesidad urgente de mejora y el desarrollo de sistemas de puntuación de alta fidelidad que controlen con precisión el desempeño de la herramienta.

Para crear mejores métricas de puntuación, el equipo de investigación diseñó un nuevo método llamado RadGraph F1 para evaluar el desempeño de las herramientas de IA que generan informes radiológicos a partir de imágenes médicas. Además, crearon una herramienta de evaluación compuesta llamada RadCliQ, que combina múltiples métricas para producir una puntuación única que está mas alineada con la forma en que un radiólogo humano evaluaría el desempeño de un modelo de IA. Usando estas nuevas herramientas de puntuación, los investigadores evaluaron varios modelos de IA de última generación y encontraron una brecha notable entre sus puntuaciones reales y las puntuaciones más altas posibles.

En el futuro, los investigadores prevén construir modelos de IA médicos generalistas capaces de realizar varias tareas complejas, incluida la resolución de problemas novedosos. Dichos sistemas de IA podrían comunicarse de manera efectiva con radiólogos y médicos sobre imágenes médicas, ayudando en las decisiones de diagnóstico y tratamiento. El equipo también tiene como objetivo desarrollar asistentes de IA que puedan explicar los hallazgos de imágenes directamente a los pacientes utilizando un lenguaje cotidiano, mejorando la comprensión y el compromiso del paciente. En última instancia, estos avances podrían revolucionar las prácticas de imágenes médicas, mejorando la eficiencia, la precisión y la atención al paciente.

“Evaluar con precisión los sistemas de IA es el primer paso crítico para generar informes de radiología que sean clínicamente útiles y confiables”, dijo el autor principal del estudio, Pranav Rajpurkar, profesor asistente de informática biomédica en el Instituto Blavatnik en HMS. “Al alinearse mejor con los radiólogos, nuestras nuevas métricas acelerarán el desarrollo de la IA que se integra a la perfección en el flujo de trabajo clínico para mejorar la atención al paciente”.

Enlaces relacionados:
Facultad de Medicina de Harvard

Proveedor de oro
Ultrasound System
FUTUS LE
New
Proveedor de oro
Electrode Solution and Skin Prep
Signaspray
Fetal Doppler
Sonicaid FD1 / FD3
New
Silver Supplier
Solid State Kv/Dose Multi-Sensor
AGMS-DM+

Print article
Radcal

Canales

Radiografía

ver canal
Imagen:  INSIGHT CXR de Lunit detecta 10 hallazgos radiológicos anormales con una precisión del 97-99 % (Fotografía cortesía de Lunit)

Software de detección de lesiones basado en IA detecta nódulos pulmonares incidentales en radiografías de tórax

En el campo de la radiología, la inteligencia artificial (IA) ha logrado avances significativos, particularmente en el desarrollo de software de detección de lesiones basado en IA para r... Más

RM

ver canal
Imagen: Los investigadores están utilizando radioterapia guiada por resonancia magnética que combina resonancia magnética diaria con radioterapia (Fotografía cortesía de Sylvester)

Técnica de IA rastrea automáticamente tumores en grandes conjuntos de datos de resonancia magnética para guiar tratamiento del glioblastoma en tiempo real

El tratamiento del glioblastoma, un cáncer cerebral agresivo y prevalente, implica el uso de radioterapia guiada por imágenes de tomografía computarizada. Si bien este método... Más

Ultrasonido

ver canal
Imagen: El nuevo parche de ultrasonido puede medir qué tan llena está la vejiga (Fotografía cortesía del MIT)

Parche de ultrasonido diseñado para monitorear la salud de la vejiga y riñones podría permitir diagnóstico más temprano del cáncer

La disfunción de la vejiga y los problemas de salud relacionados afectan a millones de personas en todo el mundo. Monitorear el volumen de la vejiga es crucial para evaluar la salud de los riñones.... Más

Medicina Nuclear

ver canal
Imagen: Un novedoso radiotrazador PET facilita la detección temprana y no invasiva de la EII (Fotografía cortesía de Karmanos)

Nuevo radiotrazador PET ayuda a detectar de forma temprana y no invasiva la enfermedad inflamatoria intestinal

La enfermedad inflamatoria intestinal (EII), que incluye la enfermedad de Crohn y la colitis ulcerosa, es una afección inflamatoria del tracto gastrointestinal que padecen aproximadamente a siete... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Los asistentes pueden descubrir productos y tecnología innovadores en las Exhibiciones Técnicas de RSNA 2023 (Fotografía cortesía de RSNA)

Exposiciones técnicas RSNA 2023 ofrecerá innovaciones en IA, impresión 3D y más

La 109.ª Asamblea Científica y Reunión Anual de la Sociedad Radiológica de América del Norte (RSNA, Oak Brook, IL, EUA), que se celebrará en Chicago del 26 al 30... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.