Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Sistema de IA combina imágenes por TC con datos clínicos y genéticos para detección temprana del cáncer de pulmón

Por el equipo editorial de MedImaging en español
Actualizado el 19 Mar 2024
Print article
Imagen: Un nuevo estudio sugiere que las imágenes de TC con el sistema automatizado de IA pueden predecir el genotipo RFCE (Fotografía cortesía de 123RF)
Imagen: Un nuevo estudio sugiere que las imágenes de TC con el sistema automatizado de IA pueden predecir el genotipo RFCE (Fotografía cortesía de 123RF)

El pronóstico del carcinoma de pulmón ha evolucionado significativamente con el descubrimiento de dianas moleculares y sus correspondientes tratamientos. Específicamente, las mutaciones en el gen del receptor del factor de crecimiento epidérmico (RFCE), que se encuentra en el carcinoma de pulmón, sirven como objetivos clave para terapias especializadas. Sin embargo, en países con recursos limitados como la India, los métodos de prueba avanzados, como la secuenciación de próxima generación, siguen siendo inaccesibles para un uso generalizado. Los desafíos también incluyen obtener suficiente tejido a partir de biopsias centrales de pulmón y lidiar con la heterogeneidad intratumoral inherente que complica la identificación de tejidos tumorales adecuados. Ahora, los investigadores han demostrado que un sistema basado en IA puede detectar y analizar automáticamente las características de los nódulos pulmonares a partir de imágenes de TC, prediciendo la probabilidad de mutaciones del RFCE. Esta innovación ayuda a los oncólogos y pacientes en entornos con recursos limitados brindándoles una atención casi óptima y guiando las decisiones de tratamiento adecuadas.

Estudios anteriores que aprovechan la IA con imágenes de TC se han mostrado prometedores a la hora de categorizar y analizar nódulos pulmonares sin incurrir en costos adicionales. Sin embargo, la mayoría de estos métodos se han centrado únicamente en la detección de nódulos en imágenes de TC. Además, si bien la IA se ha utilizado para extraer información pulmonar completa para predecir el genotipo de RFCE y evaluar las respuestas a la terapia dirigida contra el cáncer de pulmón, dichos esfuerzos se han enfocado mayormente en las poblaciones blanca y china. Centrándose principalmente en la población india, investigadores dirigidos por el Instituto y Centro de Investigación Oncológico Rajiv Gandhi (Nueva Delhi, India) se propusieron desarrollar una estrategia basada en IA que no solo pudiera detectar sino también caracterizar nódulos pulmonares, indicando el estado mutacional del RFCE en pacientes con carcinoma de pulmonar. Esto ayudaría a clasificar a los pacientes que requieren un perfil molecular extenso del gen controlador RFCE.

El equipo creó un sistema predictivo basado en IA (AIPS) totalmente automatizado utilizando algoritmos de aprendizaje automático (ML) y aprendizaje profundo (DL). Este sistema puede detectar características de nódulos pulmonares a partir de imágenes de TC y evaluar la probabilidad de una mutación de RFCE, eliminando así la necesidad de anotaciones de imágenes que requieren mucho tiempo por parte de radiólogos y de ingeniería de características complejas. Además de incorporar la secuenciación del gen RFCE y los datos de imágenes por TC de 2.277 pacientes con carcinoma de pulmón en tres cohortes en la India y una cohorte de población blanca de TCIA, los investigadores utilizaron la cohorte LIDC-IDRI para entrenar el modelo AIPS-Nodule (AIPS-N). Este modelo detecta y caracteriza automáticamente los nódulos pulmonares. Se evaluó la eficacia de la combinación del modelo AIPS-N con factores clínicos en el modelo AIPS-Mutación (AIPS-M) para predecir el genotipo RFCE, logrando valores de área bajo la curva (AUC) que oscilaban entre 0,587 y 0,910. El AIPS-N detectó con éxito nódulos con un AP50 promedio del 70,19 % y predijo puntuaciones para cinco propiedades de los nódulos pulmonares. Esta investigación sugiere que las imágenes por TC combinadas con un sistema automatizado de IA para el análisis de nódulos pulmonares pueden predecir de manera no invasiva y rentable el genotipo de RFCE, identificando pacientes con mutaciones de RFCE.

Enlaces relacionados:
Instituto y Centro de Investigación Oncológico Rajiv Gandhi
 

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Fetal Monitor
Avante Compact II
New
1.5T MRI System
uMR 670
New
Ultrasound Table
Powered Ultrasound Table-Flat Top

Print article

Canales

Radiografía

ver canal
Imagen: La detección de cáncer de seno asistido por AI puede reducir las pruebas innecesarias (foto cortesía de Wustl)

Asistencia de IA mejora detección del cáncer de mama al reducir los falsos positivos

Radiólogos suelen detectar un caso de cáncer por cada 200 mamografías revisadas. Sin embargo, estas evaluaciones a menudo dan como resultado falsos positivos, lo que lleva a retiros... Más

RM

ver canal
Imagen: PET/MRI puede clasificar con precisión a los pacientes con cáncer de próstata (foto cortesía de 123RF)

PET/MRI mejora la precisión diagnóstica en pacientes con cáncer de próstata

El Sistema de datos e informes de imágenes de próstata (PI-RADS) es una escala de cinco puntos para evaluar el potencial de cáncer de próstata en imágenes de resonancia... Más

Ultrasonido

ver canal
Imagen: Diagrama esquemático del sistema de administración de fármacos de nanopartículas estimulados por ultrasonido para la terapia de biopelícula (foto cortesía de BIO Integration))

Nueva nanopartícula activada por ultrasonido elimina la biopelícula y la infección bacteriana

Las biopelículas, formadas por bacterias que se agregan en densas comunidades para protegerse contra las duras condiciones ambientales, contribuyen de manera importante a diversas enfermedades infecciosas.... Más

Medicina Nuclear

ver canal
Imagen: El sistema de IA utiliza imágenes de gammagrafía para el diagnóstico temprano de amiloidosis cardíaca (Fotografía cortesía de 123RF)

Sistema de IA detecta de forma automática y confiable amiloidosis cardíaca mediante imágenes de gammagrafía

La amiloidosis cardíaca, una afección caracterizada por la acumulación de depósitos anormales de proteínas (amiloide) en el músculo cardíaco, afecta gravemente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.