Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nuevo método de IA captura la incertidumbre en imágenes médicas

Por el equipo editorial de MedImaging en español
Actualizado el 20 May 2024
Print article
Imagen: El modelo de aprendizaje automático Tyche podría ayudar a capturar información crucial. (Foto cortesía de 123RF)
Imagen: El modelo de aprendizaje automático Tyche podría ayudar a capturar información crucial. (Foto cortesía de 123RF)

En el campo de la biomedicina, la segmentación es el proceso de anotar píxeles de una estructura importante en imágenes médicas, como órganos o células. Los modelos de Inteligencia Artificial (IA) se utilizan para ayudar a los médicos resaltando píxeles indicativos de enfermedades o anomalías. Sin embargo, estos modelos de IA suelen proporcionar una respuesta singular, a pesar de la ambigüedad inherente a la segmentación de imágenes médicas. Por ejemplo, cinco anotadores expertos diferentes podrían producir cinco segmentaciones variadas de un nódulo pulmonar en una tomografía computarizada, cada una de las cuales difiere en la existencia o extensión de los bordes de un nódulo en una imagen de tomografía computarizada del pulmón. Reconocer estas discrepancias y las incertidumbres inherentes puede influir significativamente en la toma de decisiones clínicas.

Ahora, investigadores del MIT (Cambridge, MA, EUA) han desarrollado una nueva herramienta de inteligencia artificial, llamada Tyche, que está diseñada para capturar la incertidumbre en una imagen médica. Tyche genera múltiples segmentaciones plausibles que resaltan áreas ligeramente diferentes de una imagen médica. Los usuarios pueden configurar la cantidad de opciones de salida que ofrece Tyche y elegir la más adecuada para sus necesidades específicas. Una de las ventajas clave de Tyche es que no requiere reentrenamiento para cada nueva tarea de segmentación, lo que lo hace más fácil de usar para médicos e investigadores biomédicos que otros métodos de IA. Esta herramienta se puede utilizar desde el primer momento para diversas aplicaciones, que van desde la detección de lesiones en radiografías de pulmón hasta la identificación de anomalías en resonancias magnéticas del cerebro, mejorando potencialmente los procesos de diagnóstico o apoyando la investigación biomédica al resaltar detalles críticos que otras herramientas podrían pasar por alto.

En pruebas que utilizaron conjuntos de datos de imágenes médicas anotadas, Tyche demostró su capacidad para capturar la diversidad de anotadores humanos de manera efectiva. Se descubrió que sus mejores predicciones superaban las de los modelos de referencia y también operaba más rápido. Tyche incluso superó a modelos más complejos entrenados con conjuntos de datos extensos y especializados. De cara al futuro, los investigadores pretenden explorar el uso de conjuntos de contextos más adaptables, que podrían incluir descripciones textuales o múltiples tipos de imágenes. También están interesados en mejorar la precisión de las predicciones menos precisas de Tyche y perfeccionar el sistema para recomendar mejor las opciones de segmentación más confiables.

“La ambigüedad ha sido poco estudiada. Si su modelo omite por completo un nódulo que tres expertos dicen que está ahí y dos expertos dicen que no, probablemente sea algo a lo que deba prestar atención”, dijo el autor principal Adrian Dalca.

“Si se quiere tener en cuenta la ambigüedad, a menudo hay que utilizar un modelo extremadamente complicado. Con el método que proponemos, nuestro objetivo es hacerlo fácil de usar con un modelo relativamente pequeño para que pueda hacer predicciones rápidamente”, añadió Marianne Rakic, candidata a doctorado en informática del MIT.

Enlaces relacionados:
MIT

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
New
Table-Top Reader
FCR PRIMA T2
New
Opaque X-Ray Mobile Lead Barrier
2594M
New
Wall Fixtures
MRI SERIES

Print article
Radcal

Canales

RM

ver canal
Imagen: Un nuevo paradigma en la planificación de la radioterapia tiene como objetivo mejorar los resultados del tratamiento para niños con tumores cerebrales (foto de 123RF)

Software de IA utiliza imágenes por RM para segmentar automáticamente estructuras cerebrales clave

Los avances en radioterapia han dado lugar a importantes innovaciones en el tratamiento de tumores cerebrales en niños, centrándose en la precisión para minimizar el daño al tejido cerebral sano circundante.... Más

Ultrasonido

ver canal
Imagen: Ejemplo de una ecografía convencional B-scan que muestra una lesión mamaria sospechosa (imagen de la izquierda) y con el nuevo análisis H-scan que muestra la masa posiblemente maligna en color (imagen de la derecha) (foto cortesía de Jihye Baek)

Nuevas tecnologías de ultrasonidos mejoran el diagnóstico del cáncer, enfermedades hepáticas y otras patologías

Varias enfermedades, incluidos algunos tipos de cáncer, pueden permanecer ocultas o ser difíciles de detectar mediante técnicas tradicionales de imagen médica.... Más

Medicina Nuclear

ver canal
Imagen: Un nuevo biomarcador facilita la distinción entre Alzheimer y la tauopatía primaria (foto cortesía de Shutterstock)

Algoritmo diagnóstico distingue entre Alzheimer y tauopatía primaria utilizando la PET

Los pacientes a menudo llegan a hospitales universitarios con enfermedades tan raras y específicas que apenas son reconocidas por los médicos en práctica Un ejemplo notable son las tauopatías primarias... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: SONASes un dispositivo de ultrasonido portátil alimentado por batería para la evaluación no invasiva de la perfusión cerebral (foto cortesía de BURL Concepts)

Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico

La evaluación del ictus isquémico se ha visto obstaculizada durante mucho tiempo por las limitaciones de las técnicas de diagnóstico por imagen tradicionales, como la tomografía... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.