Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Nuevo método de IA captura la incertidumbre en imágenes médicas

Por el equipo editorial de MedImaging en español
Actualizado el 20 May 2024
Imagen: El modelo de aprendizaje automático Tyche podría ayudar a capturar información crucial. (Foto cortesía de 123RF)
Imagen: El modelo de aprendizaje automático Tyche podría ayudar a capturar información crucial. (Foto cortesía de 123RF)

En el campo de la biomedicina, la segmentación es el proceso de anotar píxeles de una estructura importante en imágenes médicas, como órganos o células. Los modelos de Inteligencia Artificial (IA) se utilizan para ayudar a los médicos resaltando píxeles indicativos de enfermedades o anomalías. Sin embargo, estos modelos de IA suelen proporcionar una respuesta singular, a pesar de la ambigüedad inherente a la segmentación de imágenes médicas. Por ejemplo, cinco anotadores expertos diferentes podrían producir cinco segmentaciones variadas de un nódulo pulmonar en una tomografía computarizada, cada una de las cuales difiere en la existencia o extensión de los bordes de un nódulo en una imagen de tomografía computarizada del pulmón. Reconocer estas discrepancias y las incertidumbres inherentes puede influir significativamente en la toma de decisiones clínicas.

Ahora, investigadores del MIT (Cambridge, MA, EUA) han desarrollado una nueva herramienta de inteligencia artificial, llamada Tyche, que está diseñada para capturar la incertidumbre en una imagen médica. Tyche genera múltiples segmentaciones plausibles que resaltan áreas ligeramente diferentes de una imagen médica. Los usuarios pueden configurar la cantidad de opciones de salida que ofrece Tyche y elegir la más adecuada para sus necesidades específicas. Una de las ventajas clave de Tyche es que no requiere reentrenamiento para cada nueva tarea de segmentación, lo que lo hace más fácil de usar para médicos e investigadores biomédicos que otros métodos de IA. Esta herramienta se puede utilizar desde el primer momento para diversas aplicaciones, que van desde la detección de lesiones en radiografías de pulmón hasta la identificación de anomalías en resonancias magnéticas del cerebro, mejorando potencialmente los procesos de diagnóstico o apoyando la investigación biomédica al resaltar detalles críticos que otras herramientas podrían pasar por alto.

En pruebas que utilizaron conjuntos de datos de imágenes médicas anotadas, Tyche demostró su capacidad para capturar la diversidad de anotadores humanos de manera efectiva. Se descubrió que sus mejores predicciones superaban las de los modelos de referencia y también operaba más rápido. Tyche incluso superó a modelos más complejos entrenados con conjuntos de datos extensos y especializados. De cara al futuro, los investigadores pretenden explorar el uso de conjuntos de contextos más adaptables, que podrían incluir descripciones textuales o múltiples tipos de imágenes. También están interesados en mejorar la precisión de las predicciones menos precisas de Tyche y perfeccionar el sistema para recomendar mejor las opciones de segmentación más confiables.

“La ambigüedad ha sido poco estudiada. Si su modelo omite por completo un nódulo que tres expertos dicen que está ahí y dos expertos dicen que no, probablemente sea algo a lo que deba prestar atención”, dijo el autor principal Adrian Dalca.

“Si se quiere tener en cuenta la ambigüedad, a menudo hay que utilizar un modelo extremadamente complicado. Con el método que proponemos, nuestro objetivo es hacerlo fácil de usar con un modelo relativamente pequeño para que pueda hacer predicciones rápidamente”, añadió Marianne Rakic, candidata a doctorado en informática del MIT.

Enlaces relacionados:
MIT

X-ray Diagnostic System
FDX Visionary-A
Biopsy Software
Affirm® Contrast
Radiology Software
DxWorks
New
Half Apron
Demi

Canales

Radiografía

ver canal
Imagen: un algoritmo de aprendizaje profundo detecta los niveles de calcio en la arteria coronaria en tomografías computarizadas de tórax (foto cortesía de Adobe Stock)

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes

El calcio en la arteria coronaria (CAC) es un indicador importante del riesgo cardiovascular, pero su evaluación suele requerir una tomografía computarizada (TC) especializada (gated) que... Más

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: una nueva técnica de imágenes por ultrasonido médico para la monitorización en la cama del paciente podría conducir a una mejor atención al paciente (foto cortesía de Jennifer Mueller/CSU)

Nueva técnica de imágenes por ultrasonido permite el monitoreo en la UCI

La tomografía computarizada por ultrasonido (TCUS) presenta una alternativa más segura a técnicas de imagen como la tomografía computarizada por rayos X (comúnmente conocida... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.