Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Inteligencia artificial para interpretar informes de radiólogos

Por el equipo editorial de MedImaging en español
Actualizado el 22 Feb 2018
Print article
Investigadores de la Facultad de Medicina Icahn en Monte Sinaí (Nueva York, NY, EUA) han utilizado técnicas de aprendizaje automático, que incluyen algoritmos de procesamiento del lenguaje natural, para identificar conceptos clínicos en los informes de los radiólogos para las tomografías computarizadas (TC). La tecnología marca un primer paso importante en el desarrollo de una inteligencia artificial (IA) que podría interpretar exámenes y diagnosticar enfermedades.

Se espera que la IA ayude a los radiólogos a interpretar los rayos X, las tomografías computarizadas y los estudios de imágenes por resonancia magnética (RM), pero requiere que el software informático interprete la diferencia entre un estudio normal y los hallazgos anormales. Los investigadores llevaron a cabo un estudio para entrenar la tecnología de IA para comprender los informes de texto escritos por los radiólogos creando una serie de algoritmos para enseñar a las computadoras grupos de frases, como fosfolípidos, acidez estomacal y colonoscopia.

Utilizando 96,303 informes de radiólogos asociados con las tomografías computarizadas de cabeza realizadas en el Hospital Monte Sinaí y Monte Sinaí Queens entre 2010 y 2016, los investigadores capacitaron el software. Calcularon las métricas que reflejaban la variedad de lenguaje utilizado en estos informes y los compararon con otras grandes colecciones de texto, incluidos miles de libros, noticias de Reuters, notas de pacientes hospitalizados y revisiones de productos de Amazon para caracterizar la “complejidad léxica” de los informes de los radiólogos. Los investigadores encontraron una exactitud del 91%, lo que demuestra que es posible identificar automáticamente los conceptos en el texto del complejo dominio de la radiología.

“El lenguaje utilizado en radiología tiene una estructura natural, lo que hace que sea apta para el aprendizaje automático”, dijo el autor principal, Eric Oermann, MD, Instructor en el Departamento de Neurocirugía en la Facultad de Medicina Icahn en Monte Sinaí. “Los modelos de aprendizaje automático basados en conjuntos de datos de texto radiológico masivos pueden facilitar el entrenamiento de futuros sistemas basados en IA para analizar imágenes radiológicas”.

“El objetivo final es crear algoritmos que ayuden a los médicos a diagnosticar con exactitud a los pacientes”, dice el primer autor, John Zech, un estudiante de medicina en la Facultad de Medicina Icahn en Monte Sinaí. “El aprendizaje profundo tiene muchas aplicaciones potenciales en radiología: clasificar para identificar estudios que requieren evaluación inmediata, marcar partes anormales de las imágenes transversales para su posterior revisión, caracterizar masas relacionadas con malignidad, y esas aplicaciones requerirán muchos ejemplos de entrenamiento etiquetados”.

Wall Fixtures
MRI SERIES
Portable Color Doppler Ultrasound System
S5000
40/80-Slice CT System
uCT 528
Ultrasound Imaging System
P12 Elite

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.