Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Los científicos usan el aprendizaje automático y los exámenes de resonancia magnética para predecir las dificultades de aprendizaje

Por el equipo editorial de Medimaging en español
Actualizado el 17 Oct 2018
Print article
Imagen: los investigadores utilizaron la inteligencia artificial y la resonancia magnética para identificar las dificultades de aprendizaje en los niños (Fotografía cortesía de iStock).
Imagen: los investigadores utilizaron la inteligencia artificial y la resonancia magnética para identificar las dificultades de aprendizaje en los niños (Fotografía cortesía de iStock).
Un equipo de científicos de la Unidad de Cognición y Ciencias del Cerebro del Consejo de Investigación Médica (MRC) de la Universidad de Cambridge (Cambridge, Inglaterra, Reino Unido) utilizó el aprendizaje automático, un tipo de inteligencia artificial, con datos de cientos de niños que luchan en la escuela para identificar grupos de dificultades de aprendizaje, que no coinciden con su diagnóstico anterior. Según los investigadores, esto refuerza la necesidad de que los niños reciban evaluaciones detalladas de sus habilidades cognitivas para identificar el mejor tipo de apoyo.

Para el estudio, los investigadores reclutaron a 550 niños que habían sido remitidos a una clínica porque tenían dificultades en la escuela. Las investigaciones anteriores sobre las dificultades de aprendizaje se habían centrado en niños a los que ya se les había diagnosticado una dificultad particular, como el trastorno por déficit de atención con hiperactividad (TDAH), un trastorno del espectro autista o dislexia. El último estudio incluyó a niños con todas las dificultades, independientemente de su diagnóstico, para capturar mejor el rango de dificultades entre ellas y la superposición de las categorías de diagnóstico.

Los investigadores aplicaron el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades al proporcionarle al algoritmo informático una gran cantidad de datos de pruebas cognitivas de cada niño, incluidas las medidas de audición, el razonamiento espacial, la resolución de problemas, el vocabulario y la memoria. Basado en estos datos, el algoritmo sugirió que los niños encajan mejor en cuatro grupos de dificultades. Estos grupos se alinearon estrechamente con otros datos sobre los niños, como los informes de los padres sobre sus dificultades de comunicación y los datos educativos sobre lectura y matemáticas.

Sin embargo, no hubo correspondencia con sus diagnósticos previos. Con el fin de verificar si estas agrupaciones correspondían a diferencias biológicas, los grupos se verificaron en las resonancias magnéticas cerebrales de 184 niños. Las agrupaciones reflejaban patrones de conectividad en partes del cerebro de los niños, lo que sugiere que el aprendizaje automático identificaba diferencias que reflejan en parte la biología subyacente. Dos de los cuatro grupos identificados fueron: dificultades con las habilidades de memoria de trabajo y dificultades con el procesamiento de sonidos en palabras. Los otros dos grupos identificados fueron: niños con amplias dificultades cognitivas en muchas áreas, y niños con resultados de pruebas cognitivas típicas para su edad. Los investigadores notaron que los niños en la agrupación que tenían resultados de pruebas cognitivas que eran típicos para su edad podían tener, en todo caso, otras dificultades que afectaban su escolarización, como las dificultades de comportamiento, que no se habían incluido en el aprendizaje automático.

"Nuestro estudio es el primero de su tipo en aplicar el aprendizaje automático a un amplio espectro de cientos de estudiantes con dificultades", dijo el Dr. Duncan Astle, de la Unidad de Cognición y Ciencias del Cerebro del MRC en la Universidad de Cambridge, quien dirigió el estudio.

"Estos son hallazgos interesantes en una etapa temprana que comienzan a investigar cómo podemos aplicar nuevas tecnologías, como el aprendizaje automático, para comprender mejor la función cerebral", dijo la Dra. Joanna Latimer, Directora de Neurociencias y Salud Mental del MRC.


Enlace relacionado:
Universidad de Cambridge


Print article
Radcal

Canales

Radiografía

ver canal
Imagen: Ejemplos de dosímetros de extremidades Thermo Fisher (Fotografía cortesía de Thermo Fisher Scientific).

Un servicio nuevo de monitorización simplifica los programas de seguridad de la radiación

Un nuevo servicio de monitorización de dosimetría permite a las instalaciones con requisitos de seguridad radiológica simplificar la gestión de sus programas de seguridad. Los Servicios de Dosimetría... Más

Ultrasonido

ver canal
Imagen: Un estudio nuevo afirma que el software de inteligencia artificial (IA) puede ayudar a identificar la información de los marcapasos más rápido que los métodos actuales (Fotografía cortesía de iStock).

La IA mejora la identificación mediante rayos X de los marcapasos

Según un estudio nuevo, el software de inteligencia artificial (IA) puede ayudar a determinar la marca y el modelo de los dispositivos de ritmo cardíaco (DRC) implantados con mayor exactitud y rapidez... Más

Medicina Nuclear

ver canal
Imagen: La plataforma de radiocirugía giroscópica ZAP-X (Fotografía cortesía de ZAP Surgical Systems).

Una plataforma de radiocirugía giroscópica hace la ablación de tumores de cerebro

Una plataforma nueva de radioterapia (RT) administra radiocirugía estereotáctica de dosis altas (SRS) para extirpar de forma no invasiva los tumores cerebrales y otras afecciones intracraneales seleccionadas.... Más

Imaginología General

ver canal
Imagen: El WL12 radiomarcado ilumina el tumor en un ratón durante una TEP (Fotografía cortesía de Sridhar Nimmagadda/ JHU-SOM).

La TEP ayuda a cuantificar el compromiso de los objetivos en la inmunoterapia del cáncer

Un estudio nuevo sugiere que se pueden usar las tomografías por emisión de positrones (TEP) para calcular el compromiso y la cinética de residencia del tumor de las terapias con anticuerpos.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.