Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer de próstata

Por el equipo editorial de Medimaging en español
Actualizado el 04 Mar 2019
Print article
Imagen: Los investigadores han desarrollado un marco de aprendizaje automático que puede diferenciar con mayor exactitud el cáncer de próstata de bajo y alto riesgo (Fotografía cortesía de iStock).
Imagen: Los investigadores han desarrollado un marco de aprendizaje automático que puede diferenciar con mayor exactitud el cáncer de próstata de bajo y alto riesgo (Fotografía cortesía de iStock).
Investigadores de la Facultad de Medicina Icahn en Monte Sinaí (Nueva York, NY, EUA) y de la Facultad de Medicina Keck de la Universidad del Sur de California (Los Ángeles, CA, EUA) han desarrollado un marco de aprendizaje automático que puede diferenciar entre el cáncer de próstata de bajo y alto riesgo con mayor precisión que nunca. Se espera que el marco ayude a los médicos, en particular a los radiólogos, a identificar las opciones de tratamiento con mayor exactitud para los pacientes con cáncer de próstata, reduciendo la necesidad de una intervención clínica innecesaria.

Los métodos estándar que se utilizan actualmente para evaluar el riesgo de cáncer de próstata son las imágenes de resonancia magnética multiparamétricas (mpMRI), que detectan lesiones de próstata, y el Sistema de Datos e Informes de Imágenes de Próstata, versión 2 (PI-RADS v2), un sistema de calificación de cinco puntos que clasifica las lesiones encontradas en la mpMRI. Estas herramientas predicen sólidamente la probabilidad de un cáncer de próstata clínicamente significativo. Sin embargo, la puntuación PI-RADS v2 es subjetiva y no distingue claramente entre los niveles de cáncer intermedio y maligno (puntuaciones 3, 4 y 5), lo que resulta en diferentes interpretaciones entre los médicos, la mayor parte de las veces.

Para remediar este inconveniente, se ha propuesto combinar el aprendizaje automático con la radiografía, una rama de la medicina que utiliza algoritmos para extraer grandes cantidades de características cuantitativas de las imágenes médicas. Mientras que otros estudios solo han probado un número limitado de métodos de aprendizaje automático para abordar esta limitación, los investigadores de Monte Sinaí y USC han desarrollado un marco predictivo que evaluó de manera rigurosa y sistemática muchos de esos métodos para identificar el que tiene el mejor desempeño. El marco también aprovecha conjuntos de datos de entrenamiento y validación más amplios que los estudios anteriores, permitiendo a los investigadores clasificar el cáncer de próstata de los pacientes con alta sensibilidad y un valor predictivo aún mayor.

“Al combinar de manera rigurosa y sistemática el aprendizaje automático con la radiografía, nuestro objetivo es proporcionar a los radiólogos y al personal clínico una herramienta de predicción sólida que se pueda traducir en una atención al paciente más efectiva y personalizada”, dijo Gaurav Pandey, PhD, Profesor Asistente de Genética y Ciencias Genómicas en la Facultad de Medicina Icahn en Monte Sinaí y autor correspondiente principal de la publicación junto con el coautor correspondiente, Bino Varghese, PhD, Profesor Asistente de Investigación en Radiología en la Facultad de Medicina Keck en la USC. “El camino para predecir la progresión del cáncer de próstata con alta exactitud está en permanente mejora y creemos que nuestro marco objetivo es un avance muy necesario”.

Enlace relacionado:
Facultad de Medicina Icahn en Monte Sinaí
Facultad de Medicina Keck de la Universidad del Sur de California



Print article

Canales

Radiografía

ver canal
Imagen: Un estudio nuevo sugiere que modificar las historias clínicas electrónicas (HCE) de un hospital podría reducir significativamente la frecuencia de las radiografías de tórax realizadas en pacientes en la unidad de cuidados intensivos (UCI) (Fotografía cortesía de iStock).

Reglas de imagenología más estrictas en la HCE reducen las radiografías en las UCI

Los investigadores de la Clínica Cleveland (CC, OH, EUA) realizaron un estudio para examinar si la revisión de las opciones de ordenamiento para las imágenes en la UCI daba como resultado daños a los pacientes.... Más

Ultrasonido

ver canal
Imagen: El densitómetro óseo de ultrasonido para el calcáneo, Sonost 2000 (Fotografía cortesía de Econet).

La evaluación ósea con el ultrasonido podría aumentar la detección de la osteoporosis

Un estudio nuevo sugiere que la ecografía (US) del hueso calcáneo puede establecer la densidad mineral ósea (DMO) a la par con la absorciometría de rayos X de energía dual estándar (DXA), el actual estándar de oro.... Más

Medicina Nuclear

ver canal
Imagen: La plataforma de radiocirugía giroscópica ZAP-X (Fotografía cortesía de ZAP Surgical Systems).

Una plataforma de radiocirugía giroscópica hace la ablación de tumores de cerebro

Una plataforma nueva de radioterapia (RT) administra radiocirugía estereotáctica de dosis altas (SRS) para extirpar de forma no invasiva los tumores cerebrales y otras afecciones intracraneales seleccionadas.... Más

Imaginología General

ver canal
Imagen: Agregación de nanopartículas en presencia de calcio; partículas del sensor en ausencia (I) o presencia (D) de calcio (Fotografía cortesía de Alan Jasanoff / MIT).

Un sensor novedoso de resonancia magnética rastrea los procesos de señalización en el cerebro

De acuerdo con un estudio nuevo, un agente de contraste novedoso para la resonancia magnética (RM) basado en manganeso puede obtener imágenes de iones de calcio intracelulares en el interior del cerebro.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.