Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer de próstata

Por el equipo editorial de MedImaging en español
Actualizado el 04 Mar 2019
Print article
Investigadores de la Facultad de Medicina Icahn en Monte Sinaí (Nueva York, NY, EUA) y de la Facultad de Medicina Keck de la Universidad del Sur de California (Los Ángeles, CA, EUA) han desarrollado un marco de aprendizaje automático que puede diferenciar entre el cáncer de próstata de bajo y alto riesgo con mayor precisión que nunca. Se espera que el marco ayude a los médicos, en particular a los radiólogos, a identificar las opciones de tratamiento con mayor exactitud para los pacientes con cáncer de próstata, reduciendo la necesidad de una intervención clínica innecesaria.

Los métodos estándar que se utilizan actualmente para evaluar el riesgo de cáncer de próstata son las imágenes de resonancia magnética multiparamétricas (mpMRI), que detectan lesiones de próstata, y el Sistema de Datos e Informes de Imágenes de Próstata, versión 2 (PI-RADS v2), un sistema de calificación de cinco puntos que clasifica las lesiones encontradas en la mpMRI. Estas herramientas predicen sólidamente la probabilidad de un cáncer de próstata clínicamente significativo. Sin embargo, la puntuación PI-RADS v2 es subjetiva y no distingue claramente entre los niveles de cáncer intermedio y maligno (puntuaciones 3, 4 y 5), lo que resulta en diferentes interpretaciones entre los médicos, la mayor parte de las veces.

Para remediar este inconveniente, se ha propuesto combinar el aprendizaje automático con la radiografía, una rama de la medicina que utiliza algoritmos para extraer grandes cantidades de características cuantitativas de las imágenes médicas. Mientras que otros estudios solo han probado un número limitado de métodos de aprendizaje automático para abordar esta limitación, los investigadores de Monte Sinaí y USC han desarrollado un marco predictivo que evaluó de manera rigurosa y sistemática muchos de esos métodos para identificar el que tiene el mejor desempeño. El marco también aprovecha conjuntos de datos de entrenamiento y validación más amplios que los estudios anteriores, permitiendo a los investigadores clasificar el cáncer de próstata de los pacientes con alta sensibilidad y un valor predictivo aún mayor.

“Al combinar de manera rigurosa y sistemática el aprendizaje automático con la radiografía, nuestro objetivo es proporcionar a los radiólogos y al personal clínico una herramienta de predicción sólida que se pueda traducir en una atención al paciente más efectiva y personalizada”, dijo Gaurav Pandey, PhD, Profesor Asistente de Genética y Ciencias Genómicas en la Facultad de Medicina Icahn en Monte Sinaí y autor correspondiente principal de la publicación junto con el coautor correspondiente, Bino Varghese, PhD, Profesor Asistente de Investigación en Radiología en la Facultad de Medicina Keck en la USC. “El camino para predecir la progresión del cáncer de próstata con alta exactitud está en permanente mejora y creemos que nuestro marco objetivo es un avance muy necesario”.

Enlace relacionado:
Facultad de Medicina Icahn en Monte Sinaí
Facultad de Medicina Keck de la Universidad del Sur de California


Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Radiology Software
MSK Radiology
Under Table Shield
3 Section Double Pivot Under Table Shield
New
DR Flat Panel Detector
1500L

Print article

Canales

Radiografía

ver canal
Imagen: El nuevo programa puede ayudar en la detección temprana del cáncer de mama (Fotografía cortesía de NTU, Singapur)

Programa informático combina IA y tecnología de imágenes térmicas para detección temprana de cáncer de mama

El cáncer de mama sigue siendo el cáncer más prevalente en las mujeres en todo el mundo. En 2020, la Organización Mundial de la Salud (OMS) informó aproximadamente 2,1... Más

RM

ver canal
Imagen: La nueva prueba de resonancia magnética podría transformar el diagnóstico de falla de derivación en hidrocefalos (Fotografía cortesía de 123RF)

Prueba de resonancia magnética de 60 segundos ayuda a diagnosticar más fácilmente el fallo de derivación en niños con hidrocefalia

La hidrocefalia, una afección caracterizada por la acumulación de líquido cefalorraquídeo (LCR) en el cerebro, se trata comúnmente colocando quirúrgicamente una... Más

Medicina Nuclear

ver canal
Imagen: Un agente de imágenes PET recientemente desarrollado es efectivo para identificar el cáncer medular de tiroides (Fotografía cortesía de 123RF)

Nuevo trazador PET mejora detección de lesiones en cáncer medular de tiroides

El cáncer medular de tiroides (CMT) representa aproximadamente el 3 % de todos los casos de cáncer de tiroides y es notablemente raro. Surge de células diferentes en comparación... Más

Imaginología General

ver canal
Imagen: El software LungQ v3.0.0 ha recibido la autorización 510 (k) de la FDA de EUA para el análisis con IA de las imágenes de TC de tórax (Fotografía cortesía de Thirona)

Software de IA para análisis de imágenes de TC de tórax permite tratamiento personalizado para pacientes pulmonares

Un novedoso software clínico aprovecha la inteligencia artificial (IA) para segmentar automáticamente varios segmentos y subsegmentos pulmonares en la anatomía interna del pulmón.... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.