Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
30 ene 2023 - 02 feb 2023

Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer de próstata

Por el equipo editorial de MedImaging en español
Actualizado el 04 Mar 2019
Print article
Investigadores de la Facultad de Medicina Icahn en Monte Sinaí (Nueva York, NY, EUA) y de la Facultad de Medicina Keck de la Universidad del Sur de California (Los Ángeles, CA, EUA) han desarrollado un marco de aprendizaje automático que puede diferenciar entre el cáncer de próstata de bajo y alto riesgo con mayor precisión que nunca. Se espera que el marco ayude a los médicos, en particular a los radiólogos, a identificar las opciones de tratamiento con mayor exactitud para los pacientes con cáncer de próstata, reduciendo la necesidad de una intervención clínica innecesaria.

Los métodos estándar que se utilizan actualmente para evaluar el riesgo de cáncer de próstata son las imágenes de resonancia magnética multiparamétricas (mpMRI), que detectan lesiones de próstata, y el Sistema de Datos e Informes de Imágenes de Próstata, versión 2 (PI-RADS v2), un sistema de calificación de cinco puntos que clasifica las lesiones encontradas en la mpMRI. Estas herramientas predicen sólidamente la probabilidad de un cáncer de próstata clínicamente significativo. Sin embargo, la puntuación PI-RADS v2 es subjetiva y no distingue claramente entre los niveles de cáncer intermedio y maligno (puntuaciones 3, 4 y 5), lo que resulta en diferentes interpretaciones entre los médicos, la mayor parte de las veces.

Para remediar este inconveniente, se ha propuesto combinar el aprendizaje automático con la radiografía, una rama de la medicina que utiliza algoritmos para extraer grandes cantidades de características cuantitativas de las imágenes médicas. Mientras que otros estudios solo han probado un número limitado de métodos de aprendizaje automático para abordar esta limitación, los investigadores de Monte Sinaí y USC han desarrollado un marco predictivo que evaluó de manera rigurosa y sistemática muchos de esos métodos para identificar el que tiene el mejor desempeño. El marco también aprovecha conjuntos de datos de entrenamiento y validación más amplios que los estudios anteriores, permitiendo a los investigadores clasificar el cáncer de próstata de los pacientes con alta sensibilidad y un valor predictivo aún mayor.

“Al combinar de manera rigurosa y sistemática el aprendizaje automático con la radiografía, nuestro objetivo es proporcionar a los radiólogos y al personal clínico una herramienta de predicción sólida que se pueda traducir en una atención al paciente más efectiva y personalizada”, dijo Gaurav Pandey, PhD, Profesor Asistente de Genética y Ciencias Genómicas en la Facultad de Medicina Icahn en Monte Sinaí y autor correspondiente principal de la publicación junto con el coautor correspondiente, Bino Varghese, PhD, Profesor Asistente de Investigación en Radiología en la Facultad de Medicina Keck en la USC. “El camino para predecir la progresión del cáncer de próstata con alta exactitud está en permanente mejora y creemos que nuestro marco objetivo es un avance muy necesario”.

Enlace relacionado:
Facultad de Medicina Icahn en Monte Sinaí
Facultad de Medicina Keck de la Universidad del Sur de California


Proveedor de oro
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
New
Hand-Held Bidirectional Vascular Doppler
Bidop 7
New
Digital Imaging System
ACQUIDR
New
Data Management Platform
Track-it

Print article
CIRS -  MIRION
Radcal

Canales

Radiografía

ver canal
Los investigadores usaron IA para clasificar a los pacientes con dolor en el pecho (Fotografía cortesía de Pexels)

Primer modelo de IA de aprendizaje profundo clasifica pacientes con dolor torácico mediante rayos X

El síndrome de dolor torácico agudo puede implicar opresión, ardor u otras molestias en el pecho o un dolor intenso que se extiende a la espalda, el cuello, los hombros, los brazos... Más

RM

ver canal
IA reconstruye los datos faltantes de las exploraciones rápidas de resonancia magnética (Fotografía cortesía de NYU Langone)

Resonancia magnética acelerada con reconstrucción de imágenes por IA reduce casi a la mitad los tiempos de escaneo (MI-MRI)

Según un nuevo estudio, la inteligencia artificial (IA) puede reconstruir imágenes de resonancia magnética (IRM) rápidas y de muestreo grueso en imágenes de alta calidad... Más

Ultrasonido

ver canal
Imagen: El parche de ultrasonido portátil rastrea la presión arterial en una arteria o vena profunda (Fotografía cortesía de Chonghe Wang/Nature Biomedical Engineering)

Parche de ultrasonido portátil del tamaño de una estampilla proporciona imágenes cardíacas sobre la marcha

La presión arterial central, la presión en los vasos sanguíneos centrales, envía sangre directamente desde el corazón a otros órganos vitales del cuerpo y es diferente... Más

Medicina Nuclear

ver canal
Imagen: El seguimiento del tratamiento con radiación en tiempo real promete una terapia contra el cáncer más segura y efectiva (Fotografía cortesía de Pexels)

Imágenes en 3D en tiempo real brindan visión única de los rayos X que golpean el interior del cuerpo durante la radioterapia

La radiación se usa en el tratamiento de cientos de miles de pacientes con cáncer cada año, bombardeando un área del cuerpo con ondas y partículas de alta energía,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.