Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un sistema nuevo de IA es tan bueno como los radiólogos para detectar el cáncer de próstata

Por el equipo editorial de MedImaging en español
Actualizado el 01 May 2019
Investigadores de la Universidad de California {(UCLA), Los Ángeles, CA, EUA} desarrollaron un sistema nuevo de inteligencia artificial (IA) para ayudar a los radiólogos a mejorar su capacidad para diagnosticar el cáncer de próstata. El sistema, llamado FocalNet, ayuda a identificar y predecir la agresividad de la enfermedad evaluando las imágenes de resonancia magnética (RM) con casi el mismo nivel de exactitud que los radiólogos experimentados.

En general, los radiólogos usan la RM para detectar y evaluar la agresividad de los tumores malignos de próstata. Sin embargo, esto requiere practicar en miles de exámenes para aprender a determinar con exactitud si un tumor es canceroso o benigno y para determinar con exactitud el grado del cáncer. Además, muchos hospitales carecen de los recursos para implementar la capacitación altamente especializada requerida para detectar el cáncer usando la resonancia magnética.

FocalNet es una red neuronal artificial que puede ayudar a los radiólogos a mejorar su capacidad para diagnosticar el cáncer de próstata mediante el uso de un algoritmo que comprende más de un millón de variables entrenables. Los investigadores de la UCLA entrenaron el sistema haciéndolo analizar las imágenes por resonancia magnética de 417 hombres con cáncer de próstata. Los resultados de los exámenes se introdujeron en el sistema para que pudiera aprender a evaluar y clasificar los tumores de manera coherente y comparar los resultados con la muestras de patología real. Los investigadores probaron FocalNet y encontraron que tenía un 80,5% de exactitud en la lectura de las resonancias magnéticas, en comparación con los radiólogos que tenían al menos 10 años de experiencia y que tenían un 83,9% de exactitud. Esto sugiere que un sistema de IA podría ahorrar tiempo y proporcionar, potencialmente, orientación de diagnóstico a los radiólogos con menos experiencia.

Enlace relacionado:
Universidad de California

New
Mobile X-Ray System
K4W
Digital Radiographic System
OMNERA 300M
X-ray Diagnostic System
FDX Visionary-A
Multi-Use Ultrasound Table
Clinton

Canales

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: la solución Angio-CT integra los últimos avances en imágenes de intervención (foto cortesía de Canon Medical)

Avanzada solución de angio-TC ofrece nuevas posibilidades terapéuticas

Mantener la precisión y la seguridad en radiología intervencionista es un desafío constante, especialmente a medida que los procedimientos complejos requieren tanto alta precisión... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.