Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Un sistema nuevo de IA es tan bueno como los radiólogos para detectar el cáncer de próstata

Por el equipo editorial de MedImaging en español
Actualizado el 01 May 2019
Print article
Investigadores de la Universidad de California {(UCLA), Los Ángeles, CA, EUA} desarrollaron un sistema nuevo de inteligencia artificial (IA) para ayudar a los radiólogos a mejorar su capacidad para diagnosticar el cáncer de próstata. El sistema, llamado FocalNet, ayuda a identificar y predecir la agresividad de la enfermedad evaluando las imágenes de resonancia magnética (RM) con casi el mismo nivel de exactitud que los radiólogos experimentados.

En general, los radiólogos usan la RM para detectar y evaluar la agresividad de los tumores malignos de próstata. Sin embargo, esto requiere practicar en miles de exámenes para aprender a determinar con exactitud si un tumor es canceroso o benigno y para determinar con exactitud el grado del cáncer. Además, muchos hospitales carecen de los recursos para implementar la capacitación altamente especializada requerida para detectar el cáncer usando la resonancia magnética.

FocalNet es una red neuronal artificial que puede ayudar a los radiólogos a mejorar su capacidad para diagnosticar el cáncer de próstata mediante el uso de un algoritmo que comprende más de un millón de variables entrenables. Los investigadores de la UCLA entrenaron el sistema haciéndolo analizar las imágenes por resonancia magnética de 417 hombres con cáncer de próstata. Los resultados de los exámenes se introdujeron en el sistema para que pudiera aprender a evaluar y clasificar los tumores de manera coherente y comparar los resultados con la muestras de patología real. Los investigadores probaron FocalNet y encontraron que tenía un 80,5% de exactitud en la lectura de las resonancias magnéticas, en comparación con los radiólogos que tenían al menos 10 años de experiencia y que tenían un 83,9% de exactitud. Esto sugiere que un sistema de IA podría ahorrar tiempo y proporcionar, potencialmente, orientación de diagnóstico a los radiólogos con menos experiencia.

Enlace relacionado:
Universidad de California

New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
3T MRI Scanner
MAGNETOM Cima.X
Ultrasound Imaging System
P12 Elite
X-ray Diagnostic System
FDX Visionary-A

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.