Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Método nuevo basado en IA detecta la respuesta del cerebro al tratamiento de la esclerosis múltiple

Por el equipo editorial de MedImaging en español
Actualizado el 15 Jul 2019
Investigadores en el Colegio Universitario de Londres {(UCL), Londres, Reino Unido} y el King's College de Londres {(KCL) Londres, Reino Unido} desarrollaron un método nuevo, basado en inteligencia artificial (IA), para detectar la respuesta del cerebro al tratamiento en la esclerosis múltiple (EM). El nuevo método tiene una sensibilidad sustancialmente mayor de lo que permiten las medidas convencionales derivadas por los radiólogos.

Los investigadores estudiaron pacientes con EM recurrente-remitente que fueron tratados con el fármaco modificador de la enfermedad natalizumab, en que se obtuvieron imágenes de resonancia magnética (RM) en serie antes y después del inicio del tratamiento. El equipo utilizó la visión artificial para extraer una “huella digital de imagen” del estado del cerebro de cada escaneo, capturando cambios detallados en la materia blanca y gris y produciendo un rico conjunto de trayectorias regionales a lo largo del tiempo.

En comparación con el análisis convencional de las medidas tradicionales de volumen total de lesión y materia gris que un radiólogo puede extraer, el modelado asistido por IA de las complejas huellas dactilares de la imagen fue capaz de discriminar entre las trayectorias de cambio previas y posteriores al tratamiento con una exactitud mucho mayor. El estudio demostró que la IA se puede usar para detectar cambios en las imágenes del cerebro en la EM tratada con mayor sensibilidad que las medidas lo suficientemente simples como para que los radiólogos las cuantifiquen, permitiendo un desempeño “sobrehumano” en la tarea. El enfoque se podría utilizar para guiar la terapia en pacientes individuales, detectar el éxito o el fracaso del tratamiento más rápido y para realizar ensayos de nuevos fármacos de manera más eficaz y con grupos de pacientes más pequeños.

El Dr. Parashkev Nachev del Instituto de Neurología Queen Square del UCL, quien dirigió el estudio dijo: “En lugar de intentar copiar lo que los radiólogos ya hacen perfectamente bien, el modelado computacional complejo en neurología se implementa mejor en tareas que los expertos humanos no pueden hacer en lo absoluto: sintetizar una multiplicidad rica de características clínicas y de imagen en una descripción coherente y cuantificada del paciente individual en su conjunto. Esto nos permite combinar la flexibilidad y la delicadeza de un clínico con el rigor y la objetividad de una máquina”.

Enlace relacionado:
Colegio Universitario de Londres
King's College de Londres


Digital Radiographic System
OMNERA 300M
Adjustable Mobile Barrier
M-458
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Digital X-Ray Detector Panel
Acuity G4

Canales

Radiografía

ver canal
Imagen: el nuevo método de imágenes de rayos X capaz de producir imágenes de múltiples contrastes fue desarrollado por los investigadores Mini Das y Jingcheng Yuan (Fotografía cortesía de la Universidad de Houston)

Avance en rayos X captura tres tipos de contraste de imagen en una sola toma

La detección de cáncer en etapas tempranas o cambios sutiles en las capas profundas de los tejidos ha sido un desafío para los sistemas de rayos X convencionales, que dependen únicamente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.