Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Método nuevo basado en IA detecta la respuesta del cerebro al tratamiento de la esclerosis múltiple

Por el equipo editorial de MedImaging en español
Actualizado el 15 Jul 2019
Investigadores en el Colegio Universitario de Londres {(UCL), Londres, Reino Unido} y el King's College de Londres {(KCL) Londres, Reino Unido} desarrollaron un método nuevo, basado en inteligencia artificial (IA), para detectar la respuesta del cerebro al tratamiento en la esclerosis múltiple (EM). El nuevo método tiene una sensibilidad sustancialmente mayor de lo que permiten las medidas convencionales derivadas por los radiólogos.

Los investigadores estudiaron pacientes con EM recurrente-remitente que fueron tratados con el fármaco modificador de la enfermedad natalizumab, en que se obtuvieron imágenes de resonancia magnética (RM) en serie antes y después del inicio del tratamiento. El equipo utilizó la visión artificial para extraer una “huella digital de imagen” del estado del cerebro de cada escaneo, capturando cambios detallados en la materia blanca y gris y produciendo un rico conjunto de trayectorias regionales a lo largo del tiempo.

En comparación con el análisis convencional de las medidas tradicionales de volumen total de lesión y materia gris que un radiólogo puede extraer, el modelado asistido por IA de las complejas huellas dactilares de la imagen fue capaz de discriminar entre las trayectorias de cambio previas y posteriores al tratamiento con una exactitud mucho mayor. El estudio demostró que la IA se puede usar para detectar cambios en las imágenes del cerebro en la EM tratada con mayor sensibilidad que las medidas lo suficientemente simples como para que los radiólogos las cuantifiquen, permitiendo un desempeño “sobrehumano” en la tarea. El enfoque se podría utilizar para guiar la terapia en pacientes individuales, detectar el éxito o el fracaso del tratamiento más rápido y para realizar ensayos de nuevos fármacos de manera más eficaz y con grupos de pacientes más pequeños.

El Dr. Parashkev Nachev del Instituto de Neurología Queen Square del UCL, quien dirigió el estudio dijo: “En lugar de intentar copiar lo que los radiólogos ya hacen perfectamente bien, el modelado computacional complejo en neurología se implementa mejor en tareas que los expertos humanos no pueden hacer en lo absoluto: sintetizar una multiplicidad rica de características clínicas y de imagen en una descripción coherente y cuantificada del paciente individual en su conjunto. Esto nos permite combinar la flexibilidad y la delicadeza de un clínico con el rigor y la objetividad de una máquina”.

Enlace relacionado:
Colegio Universitario de Londres
King's College de Londres


Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
High-Precision QA Tool
DEXA Phantom
Ultrasound Table
Women’s Ultrasound EA Table
Mammo DR Retrofit Solution
DR Retrofit Mammography

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.