Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Método con IA disminuye la exposición a la radiación debido a los exámenes de TC

Por el equipo editorial de MedImaging en español
Actualizado el 17 Jul 2019
Imagen: La investigación muestra que el aprendizaje automático tiene el potencial de perfeccionar la imagenología médica, especialmente la tomografía computarizada, reduciendo la exposición a la radiación y mejorando la calidad de la imagen (Fotografía cortesía de Axis Imaging News).
Imagen: La investigación muestra que el aprendizaje automático tiene el potencial de perfeccionar la imagenología médica, especialmente la tomografía computarizada, reduciendo la exposición a la radiación y mejorando la calidad de la imagen (Fotografía cortesía de Axis Imaging News).
Los ingenieros del Instituto Politécnico de Rensselaer (Troy, NY, EUA) trabajaron junto con los radiólogos del Hospital General de Massachusetts (Boston, MA, EUA) y la facultad de medicina de Harvard (Boston, MA, EUA), para demostrar que el aprendizaje automático tiene el potencial de perfeccionar enormemente la imagenología médica, en particular la tomografía computarizada (TC), reduciendo la exposición a la radiación y mejorando la calidad de las imágenes. El equipo cree que los nuevos hallazgos de su investigación son un caso sólido para aprovechar el poder de la inteligencia artificial (IA) para mejorar las tomografías computarizadas de baja dosis.

En los últimos años, ha habido un enfoque importante en las técnicas de tomografía computarizada de baja dosis para aliviar las preocupaciones sobre la exposición de los pacientes a la radiación de rayos X asociada al uso generalizado de las tomografías computarizadas. Sin embargo, reducir la radiación puede afectar la calidad de la imagen. Ingenieros de todo el mundo han intentado resolver este problema diseñando técnicas de reconstrucción iterativas para ayudar a detectar y eliminar las interferencias de las imágenes de TC. Sin embargo, el inconveniente es que estos algoritmos a veces eliminan información útil o alteran falsamente la imagen.

En la última investigación, el equipo intentó abordar este desafío persistente utilizando un marco de aprendizaje automático. Desarrollaron una red neuronal profunda dedicada y compararon sus mejores resultados con lo mejor de lo que tres de los principales escáneres de TC comerciales podrían producir con técnicas de reconstrucción iterativas. Los investigadores buscaban determinar cómo se utilizaba clínicamente el desempeño de su enfoque de aprendizaje profundo en comparación con los algoritmos iterativos representativos seleccionados. Descubrieron que los algoritmos de aprendizaje profundo desarrollados por el equipo de Rensselaer funcionaron tan bien como, o mejor que, las técnicas iterativas actuales en la mayoría de los casos.

Los investigadores también encontraron que su método de aprendizaje profundo era mucho más rápido y permitía a los radiólogos afinar las imágenes según los requisitos clínicos. Según los investigadores, los resultados positivos se obtuvieron sin acceso a los datos originales o sin procesar de todos los escáneres de tomografía computarizada, y es probable que un algoritmo de aprendizaje profundo más especializado se desempeñe aún mejor si se dispone de datos de tomografía computarizada originales. Creen que estos resultados confirman que el aprendizaje profundo podría ayudar a producir imágenes de TC más seguras y exactas, a la vez que se ejecuta más rápidamente que los algoritmos iterativos.

“La dosis de radiación ha sido un problema importante para los pacientes a quienes les realizan tomografías computarizadas. Nuestra técnica de aprendizaje automático es superior o, al menos, comparable a las técnicas iterativas utilizadas en este estudio para permitir la tomografía computarizada de baja radiación”, dijo Ge Wang, profesor de la cátedra Clark y Crossan de ingeniería biomédica en Rensselaer y un autor correspondiente en este artículo. “Es una conclusión de alto nivel que lleva un mensaje poderoso. Es hora de que el aprendizaje automático despegue rápidamente y, con suerte, se haga cargo”.

Enlace relacionado:
Instituto Politécnico de Rensselaer
Hospital General de Massachusetts
Facultad de Medicina de Harvard



New
Half Apron
Demi
3T MRI Scanner
MAGNETOM Cima.X
Digital Radiographic System
OMNERA 300M
Ultrasound Table
Women’s Ultrasound EA Table

Canales

Radiografía

ver canal
Imagen: un algoritmo de aprendizaje profundo detecta los niveles de calcio en la arteria coronaria en tomografías computarizadas de tórax (foto cortesía de Adobe Stock)

IA detecta enfermedades cardíacas ocultas en TC de tórax existentes

El calcio en la arteria coronaria (CAC) es un indicador importante del riesgo cardiovascular, pero su evaluación suele requerir una tomografía computarizada (TC) especializada (gated) que... Más

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.