Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Aprendizaje automático puede predecir la enfermedad cardíaca mejor que los otros modelos de riesgo

Por el equipo editorial de MedImaging en español
Actualizado el 23 Jul 2019
Print article
Imagen: La investigación muestra que el aprendizaje automático es más eficaz para predecir enfermedades cardíacas cuando se compara con los modelos de riesgo convencionales (Fotografía cortesía de Health Imaging).
Imagen: La investigación muestra que el aprendizaje automático es más eficaz para predecir enfermedades cardíacas cuando se compara con los modelos de riesgo convencionales (Fotografía cortesía de Health Imaging).
Un estudio realizado por investigadores de la facultad de medicina de Yale (Nueva Haven, CT, EUA) demostró que el aprendizaje automático (AA), un tipo de inteligencia artificial, funciona mejor que los modelos de riesgo convencionales para predecir ataques cardíacos y otros eventos cardíacos cuando se usan junto con un examen cardiaco común.

La evaluación exacta del riesgo es crucial para las intervenciones tempranas en el caso de las enfermedades cardíacas, aunque la determinación del riesgo es una ciencia imperfecta, y los modelos populares existentes, como el puntaje de riesgo de Framingham, tienen limitaciones, ya que no consideran directamente el estado de las arterias coronarias. La arteriografía por tomografía computarizada coronaria (CCTA, por sus siglas en inglés), un tipo de TC que proporciona imágenes altamente detalladas de los vasos del corazón, se ha convertido en una herramienta prometedora para refinar la evaluación de riesgos. De hecho, ha demostrado ser tan prometedora que un grupo de trabajo multidisciplinario introdujo recientemente un sistema de puntuación para resumir los resultados de la CCTA. La herramienta de toma de decisiones, conocida como el sistema de información y datos de enfermedades de las arterias coronarias (CAD-RADS), hace énfasis sobre las estenosis o bloqueos y el estrechamiento de las arterias coronarias. Según los investigadores, el CAD-RADS es un desarrollo importante y útil en el manejo de pacientes cardíacos, aunque su enfoque en las estenosis podría dejar de lado información importante sobre las arterias.

Observando que la CCTA muestra más que simples estenosis, los investigadores buscaron un sistema de AA capaz de minar los innumerables detalles en estas imágenes para obtener un panorama de pronóstico más completo. Para el estudio, el equipo de investigación comparó el enfoque AA con CAD-RADS y otros sistemas de puntuación de vasos en 6.892 pacientes. Los investigadores siguieron a los pacientes durante un promedio de nueve años después de la CCTA. Hubo 380 muertes por todas las causas, incluyendo 70 por enfermedad coronaria. Además, 43 pacientes reportaron ataques al corazón.

En comparación con el CAD-RADS y otras puntuaciones, el enfoque de AA discriminó mejor qué pacientes tendrían posibilidad de hacer un evento cardíaco de aquellos que no lo harían. Al decidir si comenzar con las estatinas, la puntuación de AA aseguró que el 93% de los pacientes con eventos recibirían el medicamento, en comparación con solo el 69% si se confiaba en el CAD-RADS.

Si el aprendizaje automático puede mejorar la puntuación de los vasos, aumentaría la contribución de las imágenes no invasivas a la evaluación del riesgo cardiovascular. Además, si los puntajes de los vasos derivados del AA se pudieran combinar con los factores de riesgo sin imágenes, como la edad, el sexo, la hipertensión y el tabaquismo, para desarrollar modelos de riesgo más completos, se beneficiarían tanto a los médicos como a los pacientes.

“La estimación de riesgo que se obtiene al hacer la versión de aprendizaje automático del modelo es más exacta que la estimación de riesgo que se obtendría si se confía en CAD-RADS. Ambos métodos funcionan mejor que solo usando la estimación de riesgo de Framingham. Esto muestra el valor de observar las arterias coronarias para calcular mejor el riesgo de las personas”, dijo el autor principal del estudio, Kevin M. Johnson, M.D, profesor asociado de radiología e imágenes biomédicas en la facultad de medicina de Yale.

Enlace relacionado:
Facultad de Medicina de Yale

Radiology Software
DxWorks
New
Prostate Cancer MRI Analysis Tool
DynaCAD Urology
40/80-Slice CT System
uCT 528
NMUS & MSK Ultrasound
InVisus Pro

Print article

Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.