Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo de IA identifica a los pacientes que se pueden beneficiar de la cirugía de remoción de coágulos

Por el equipo editorial de MedImaging en español
Actualizado el 22 Oct 2019
Imagen: El algoritmo de aprendizaje automático, llamado DeepSymNet, aprendió a identificar los bloqueos de los vasos sanguíneos posteriores al accidente cerebrovascular a partir de imágenes de angiografía por TC (Fotografía cortesía de Medical Xpress).
Imagen: El algoritmo de aprendizaje automático, llamado DeepSymNet, aprendió a identificar los bloqueos de los vasos sanguíneos posteriores al accidente cerebrovascular a partir de imágenes de angiografía por TC (Fotografía cortesía de Medical Xpress).
Investigadores del Centro de Ciencias de la Salud de la Universidad de Texas (Houston, TX, EUA) desarrollaron un algoritmo que puede ayudar a los médicos fuera de los principales centros de tratamiento de accidentes cerebrovasculares, a evaluar si un paciente que sufre un accidente cerebrovascular isquémico, se podría beneficiar de un procedimiento endovascular que elimine un coágulo que bloquea una arteria.

La trombectomía endovascular implica enhebrar un catéter a través de la arteria femoral en la pierna hasta llegar al cerebro, donde el coágulo se puede eliminar mecánicamente. Estudios anteriores han demostrado que el procedimiento puede mejorar los resultados para los pacientes con accidente cerebrovascular solo en casos de lesión mínima al tejido cerebral durante el tratamiento. Sin embargo, solo la neuroimagenología avanzada en forma de imágenes emergentes de resonancia magnética o perfusión de tomografía computarizada (TC) permite detectar si el tratamiento será adecuado para un paciente. Dicha tecnología y experiencia generalmente no están disponibles en la mayoría de los hospitales comunitarios y centros primarios de accidentes cerebrovasculares.

Para llenar este vacío, el equipo de investigadores desarrolló una herramienta de aprendizaje automático que se puede utilizar con la técnica ampliamente disponible de imágenes de angiografía por TC. La herramienta puede analizar imágenes “aprendiendo” automáticamente patrones sutiles de imágenes que se pueden usar como proxy para otras modalidades de imagenología más avanzadas, pero no fácilmente disponibles, como la perfusión TC. Los investigadores probaron la herramienta identificando pacientes en su registro de accidente cerebrovascular que sufrieron un accidente cerebrovascular o tenían afecciones que lo imitaban. De los 224 pacientes que sufrieron un derrame cerebral, 179 tenían bloqueos en los vasos sanguíneos cerebrales. El algoritmo de aprendizaje automático, llamado DeepSymNet, aprendió a identificar estos bloqueos a partir de las imágenes de angiogramas TC, y entrenó al software para usar esas mismas imágenes para definir el área del cerebro que había muerto, usando escáneres de perfusión TC adquiridos concurrentemente como el “estándar de oro”.

“La ventaja es que no tiene que estar en un centro de salud académico o en un hospital de atención terciaria para determinar si este tratamiento beneficiaría al paciente o no. Y lo mejor de todo, el angiograma TC ya se usa ampliamente para pacientes con accidente cerebrovascular”, dijo Sunil A. Sheth, MD, autor correspondiente y profesor asistente de neurología de la Facultad de Medicina McGovern de UT Health.

Enlace relacionado:
Centro de Ciencias de la Salud de la Universidad de Texas

Ultrasound Imaging System
P12 Elite
40/80-Slice CT System
uCT 528
Wall Fixtures
MRI SERIES
Biopsy Software
Affirm® Contrast

Canales

RM

ver canal
Imagen: una resonancia magnética cardíaca con contraste de un paciente con miocardiopatía hipertrófica considerado por MAARS con alto riesgo de muerte súbita (foto cortesía de la Universidad Johns Hopkins)

Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco

La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.