Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Inteligencia artificial para interpretar informes de radiólogos

Por el equipo editorial de MedImaging en español
Actualizado el 22 Feb 2018
Investigadores de la Facultad de Medicina Icahn en Monte Sinaí (Nueva York, NY, EUA) han utilizado técnicas de aprendizaje automático, que incluyen algoritmos de procesamiento del lenguaje natural, para identificar conceptos clínicos en los informes de los radiólogos para las tomografías computarizadas (TC). La tecnología marca un primer paso importante en el desarrollo de una inteligencia artificial (IA) que podría interpretar exámenes y diagnosticar enfermedades.

Se espera que la IA ayude a los radiólogos a interpretar los rayos X, las tomografías computarizadas y los estudios de imágenes por resonancia magnética (RM), pero requiere que el software informático interprete la diferencia entre un estudio normal y los hallazgos anormales. Los investigadores llevaron a cabo un estudio para entrenar la tecnología de IA para comprender los informes de texto escritos por los radiólogos creando una serie de algoritmos para enseñar a las computadoras grupos de frases, como fosfolípidos, acidez estomacal y colonoscopia.

Utilizando 96,303 informes de radiólogos asociados con las tomografías computarizadas de cabeza realizadas en el Hospital Monte Sinaí y Monte Sinaí Queens entre 2010 y 2016, los investigadores capacitaron el software. Calcularon las métricas que reflejaban la variedad de lenguaje utilizado en estos informes y los compararon con otras grandes colecciones de texto, incluidos miles de libros, noticias de Reuters, notas de pacientes hospitalizados y revisiones de productos de Amazon para caracterizar la “complejidad léxica” de los informes de los radiólogos. Los investigadores encontraron una exactitud del 91%, lo que demuestra que es posible identificar automáticamente los conceptos en el texto del complejo dominio de la radiología.

“El lenguaje utilizado en radiología tiene una estructura natural, lo que hace que sea apta para el aprendizaje automático”, dijo el autor principal, Eric Oermann, MD, Instructor en el Departamento de Neurocirugía en la Facultad de Medicina Icahn en Monte Sinaí. “Los modelos de aprendizaje automático basados en conjuntos de datos de texto radiológico masivos pueden facilitar el entrenamiento de futuros sistemas basados en IA para analizar imágenes radiológicas”.

“El objetivo final es crear algoritmos que ayuden a los médicos a diagnosticar con exactitud a los pacientes”, dice el primer autor, John Zech, un estudiante de medicina en la Facultad de Medicina Icahn en Monte Sinaí. “El aprendizaje profundo tiene muchas aplicaciones potenciales en radiología: clasificar para identificar estudios que requieren evaluación inmediata, marcar partes anormales de las imágenes transversales para su posterior revisión, caracterizar masas relacionadas con malignidad, y esas aplicaciones requerirán muchos ejemplos de entrenamiento etiquetados”.

Mammography System (Analog)
MAM VENUS
Post-Processing Imaging System
DynaCAD Prostate
Pocket Fetal Doppler
CONTEC10C/CL
Mammo DR Retrofit Solution
DR Retrofit Mammography

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.