Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Inteligencia artificial para interpretar informes de radiólogos

Por el equipo editorial de MedImaging en español
Actualizado el 22 Feb 2018
Investigadores de la Facultad de Medicina Icahn en Monte Sinaí (Nueva York, NY, EUA) han utilizado técnicas de aprendizaje automático, que incluyen algoritmos de procesamiento del lenguaje natural, para identificar conceptos clínicos en los informes de los radiólogos para las tomografías computarizadas (TC). La tecnología marca un primer paso importante en el desarrollo de una inteligencia artificial (IA) que podría interpretar exámenes y diagnosticar enfermedades.

Se espera que la IA ayude a los radiólogos a interpretar los rayos X, las tomografías computarizadas y los estudios de imágenes por resonancia magnética (RM), pero requiere que el software informático interprete la diferencia entre un estudio normal y los hallazgos anormales. Los investigadores llevaron a cabo un estudio para entrenar la tecnología de IA para comprender los informes de texto escritos por los radiólogos creando una serie de algoritmos para enseñar a las computadoras grupos de frases, como fosfolípidos, acidez estomacal y colonoscopia.

Utilizando 96,303 informes de radiólogos asociados con las tomografías computarizadas de cabeza realizadas en el Hospital Monte Sinaí y Monte Sinaí Queens entre 2010 y 2016, los investigadores capacitaron el software. Calcularon las métricas que reflejaban la variedad de lenguaje utilizado en estos informes y los compararon con otras grandes colecciones de texto, incluidos miles de libros, noticias de Reuters, notas de pacientes hospitalizados y revisiones de productos de Amazon para caracterizar la “complejidad léxica” de los informes de los radiólogos. Los investigadores encontraron una exactitud del 91%, lo que demuestra que es posible identificar automáticamente los conceptos en el texto del complejo dominio de la radiología.

“El lenguaje utilizado en radiología tiene una estructura natural, lo que hace que sea apta para el aprendizaje automático”, dijo el autor principal, Eric Oermann, MD, Instructor en el Departamento de Neurocirugía en la Facultad de Medicina Icahn en Monte Sinaí. “Los modelos de aprendizaje automático basados en conjuntos de datos de texto radiológico masivos pueden facilitar el entrenamiento de futuros sistemas basados en IA para analizar imágenes radiológicas”.

“El objetivo final es crear algoritmos que ayuden a los médicos a diagnosticar con exactitud a los pacientes”, dice el primer autor, John Zech, un estudiante de medicina en la Facultad de Medicina Icahn en Monte Sinaí. “El aprendizaje profundo tiene muchas aplicaciones potenciales en radiología: clasificar para identificar estudios que requieren evaluación inmediata, marcar partes anormales de las imágenes transversales para su posterior revisión, caracterizar masas relacionadas con malignidad, y esas aplicaciones requerirán muchos ejemplos de entrenamiento etiquetados”.

Digital Radiographic System
OMNERA 300M
Portable Color Doppler Ultrasound System
S5000
Wall Fixtures
MRI SERIES
Multi-Use Ultrasound Table
Clinton

Canales

RM

ver canal
Imagen: una resonancia magnética cardíaca con contraste de un paciente con miocardiopatía hipertrófica considerado por MAARS con alto riesgo de muerte súbita (foto cortesía de la Universidad Johns Hopkins)

Modelo de IA supera a los médicos en la identificación de pacientes con mayor riesgo de paro cardíaco

La miocardiopatía hipertrófica es una de las cardiopatías hereditarias más comunes y una de las principales causas de muerte súbita cardíaca en jóvenes y deportistas.... Más

Ultrasonido

ver canal
Imagen: el nuevo dispositivo implantable para el tratamiento del dolor crónico es pequeño y flexible (foto cortesía de The Zhou Lab at USC)

Dispositivo inalámbrico para el manejo del dolor crónico reduce la necesidad de analgésicos y cirugía

El dolor crónico afecta a millones de personas en todo el mundo, lo que a menudo provoca discapacidad a largo plazo y dependencia de opioides, los cuales conllevan riesgos importantes de efectos... Más

Medicina Nuclear

ver canal
Imagen: la herramienta de diagnóstico podría mejorar las decisiones de diagnóstico y tratamiento para pacientes con infecciones pulmonares crónicas (foto cortesía de SNMMI)

Nueva técnica de PET específica para bacterias detecta infecciones pulmonares difíciles de diagnosticar

Mycobacteroides abscessus es una micobacteria de rápido crecimiento que afecta principalmente a pacientes inmunodeprimidos y a personas con enfermedades pulmonares preexistentes, como fibrosis... Más

Imaginología General

ver canal
Imágenes de resultado positivo en examen de detección de colonografía por TC en un hombre asintomático de 67 años (foto cortesía de Radiology)

La colonografía por TC supera a la prueba de ADN en heces para la detección del cáncer de colon

Dado que el cáncer colorrectal sigue siendo la segunda causa principal de muertes relacionadas con el cáncer a nivel mundial, la detección temprana mediante pruebas de cribado es fundamental... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.