Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Deascargar La Aplicación Móvil




Espectroscopía Raman revela la resistencia tumoral a la radiación

Por el equipo editorial de Medimaging en español
Actualizado el 03 Jun 2019
Print article
Imagen: Un estudio nuevo sugiere que la espectroscopia Raman puede ayudar a identificar la resistencia de un tumor a la RT (Fotografía cortesía de la JHU).
Imagen: Un estudio nuevo sugiere que la espectroscopia Raman puede ayudar a identificar la resistencia de un tumor a la RT (Fotografía cortesía de la JHU).
Un estudio nuevo sugiere que la espectroscopia Raman puede identificar diferencias sutiles en el entorno bioquímico de un tumor que se correlacionan con su susceptibilidad a la radioterapia (RT).

Investigadores de la Universidad Johns Hopkins (JHU; Baltimore, MD, EUA) y la Universidad de Arkansas (UARK; Fayetteville, AR, EUA), realizaron un estudio murino para revelar cambios biomoleculares en tumores inducidos por la radiación, y descubrir las diferencias latentes que separan los tumores resistentes a la RT de los sensibles a la RT. Para ello, cultivaron xenoinjertos tumorales en ratones atímicos desnudos y cuantificaron las evaluaciones de tejido espectroscópico Raman en tumores, tanto no tratados como tratados, mediante análisis quimiométrico de las diferencias biomoleculares en el microentorno del tumor.

Encontraron que las mediciones de espectroscopia Raman revelaron diferencias significativas y confiables en el contenido de lípidos y colágeno después de la radiación en el microentorno del tumor, observando cambios consistentemente mayores en los tumores sensibles a la RT. Sobre la base de los hallazgos, crearon un algoritmo para identificar la diferencia entre los tumores resistentes a la RT y los no resistentes, y lo validaron aplicando la técnica Raman a los tumores no tratados. El algoritmo los separó en categorías resistentes y sensibles a la RT con una tasa de éxito del 97%. El estudio fue publicado el 28 de febrero de 2019 en la revista Cancer Research.

“Además de evaluar con exactitud la respuesta tumoral a la terapia, la combinación de marcadores espectrales Raman ofrece potencialmente una ruta para predecir la respuesta en tumores no tratados antes de comenzar el tratamiento”, concluyeron el autor principal, Santosh Paidi, MSc, de la JHU, y colegas. “Combinado con su naturaleza no invasiva, nuestros hallazgos proporcionan una justificación para los estudios in vivo con espectroscopia Raman, con el objetivo final de la traducción clínica para la estratificación del paciente y la adaptación de la radioterapia durante el tratamiento”.

“Este es solo el primer paso de un esfuerzo de investigación más amplio para determinar cómo los tumores de cáncer de cabeza y cuello responden a la radiación”, dijo el ingeniero mecánico y autor principal, Ishan Barman, PhD, de la JHU. “El objetivo final es construir una sonda en miniatura que pueda encajar en un laringoscopio. Esperemos que en el futuro, entonces, cuando un médico realice una endoscopia y observe el tumor canceroso de un paciente, podrá determinar si ese tumor responderá incluso a la radioterapia, y eso puede mejorar los planes de tratamiento”.

La espectroscopia Raman es una forma de espectroscopia molecular basada en la dispersión Raman. Cuando un haz de luz interactúa con un material, parte del haz se transmite, parte se refleja y parte de él se dispersa; más del 99% de la radiación dispersada tiene la misma frecuencia que el haz incidente, pero una pequeña porción de la radiación dispersada tiene frecuencias diferentes a las del haz incidente. La radiación dispersada contiene información sobre los átomos o iones particulares que conforman la molécula, los enlaces químicos que los conectan, la simetría de su estructura molecular y el entorno físico-químico donde residen.

Enlace relacionado:
Universidad Johns Hopkins
Universidad de Arkansas



Print article
Control-X Medical
CIRS

Canales

Radiografía

ver canal
Imagen: La plataforma Incisive CT (Fotografía cortesía de Philips Healthcare).

Sistema nuevo de TC integra las innovaciones en imagenología y en los flujos de trabajo

Una plataforma nueva de tomografía computarizada (TC), ayuda a los proveedores de atención médica y a los departamentos de imagenología a lograr una toma de decisiones clínicas inteligente y una mayor eficiencia.... Más

Imaginología General

ver canal
Imagen: Glándula tiroides anormal con enfermedad de Hashimoto (I) y una glándula normal (D) (Fotografía cortesía de 123rf.com).

Técnica novedosa de imagenología podría ayudar a caracterizar las enfermedades tiroideas

Según un estudio nuevo, se puede usar una combinación de tomografía optoacústica multiespectral (MSOT) y ultrasonido para la evaluación inicial y el diagnóstico diferencial de los trastornos de la tiroides.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.