Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Algoritmo impulsado por IA utiliza escaneos fMRI para detectar autismo y predecir gravedad

Por el equipo editorial de MedImaging en español
Actualizado el 12 Apr 2022
Imagen: El nuevo algoritmo impulsado por IA puede detectar el autismo en las "huellas dactilares" del cerebro (Fotografía cortesía de Unsplash)
Imagen: El nuevo algoritmo impulsado por IA puede detectar el autismo en las "huellas dactilares" del cerebro (Fotografía cortesía de Unsplash)

El autismo es uno de los trastornos del desarrollo neurológico más comunes, pero carece de biomarcadores objetivos (medidas reveladoras que indican la presencia de una condición médica y, a veces, la gravedad), lo que significa que no existe una prueba simple para el trastorno. En cambio, el diagnóstico se basa en la observación de los comportamientos de los pacientes, que naturalmente son muy variables y, por lo tanto, hacen que el diagnóstico sea un desafío. Los investigadores ahora han desarrollado un algoritmo que puede ayudar a discernir si alguien tiene autismo al observar escáneres cerebrales.

El nuevo algoritmo, desarrollado por investigadores de la Universidad de Stanford (Stanford, CA, EUA) e impulsado por avances recientes en inteligencia artificial (IA), también predice con éxito la gravedad de los síntomas del autismo en pacientes individuales. Con más perfeccionamiento, el algoritmo podría conducir a diagnósticos más tempranos, terapias más específicas y una comprensión más amplia de los orígenes del autismo en el cerebro.

El algoritmo estudia minuciosamente los datos recopilados a través de exploraciones de resonancia magnética funcional (IRMf). Estos escaneos capturan patrones de actividad neuronal en todo el cerebro. Los científicos han buscado durante mucho tiempo biomarcadores a través de exploraciones de IRMf. Sin embargo, los estudios realizados hasta la fecha con poblaciones pequeñas han informado resultados contradictorios, derivados de la variabilidad natural en los cerebros de los pacientes y confundidos aún más por las diferencias en las máquinas de resonancia magnética funcional y los métodos de prueba. Al derivar sus algoritmos de reconocimiento de imágenes, los investigadores buscaron hacer que la inteligencia artificial fuera explicable (o XAI) o comprensible para los investigadores humanos.

Al mapear esta actividad a lo largo del tiempo en muchas regiones del cerebro, el algoritmo genera "huellas dactilares" de actividad neuronal. Aunque son únicas para cada individuo, al igual que las huellas dactilares reales, las huellas dactilares del cerebro comparten características similares, lo que permite ordenarlas y clasificarlas. En un nuevo estudio, el algoritmo evaluó escáneres cerebrales de una muestra de aproximadamente 1.100 pacientes. Con una precisión del 82 %, el algoritmo seleccionó un grupo de pacientes a los que los médicos humanos habían diagnosticado con autismo. El algoritmo XAI se basa en tres regiones del cerebro que muestran diferencias significativas en la interconectividad en una parte agrupable del conjunto de datos. Dando credibilidad a los hallazgos del algoritmo XAI, esas tres regiones del cerebro han estado previamente implicadas en la patología del autismo.

Si bien el algoritmo XAI se desempeñó admirablemente en esta etapa temprana de desarrollo, los investigadores deberán mejorar aún más su precisión para elevar las huellas dactilares cerebrales al nivel de un biomarcador definitivo. Los investigadores tienen la intención de explorar la eficacia del algoritmo en estudios de hermanos, donde un hermano tiene autismo y el otro no, para perfeccionar la capacidad de detectar diferencias precisas pero críticas entre cerebros potencialmente muy similares. Los investigadores prevén que las huellas dactilares cerebrales se utilicen para evaluar los cerebros de niños muy pequeños, quizás desde los seis meses o un año, que tienen un alto riesgo de desarrollar autismo. El diagnóstico temprano es fundamental para lograr mejores resultados, ya que las terapias demuestran ser más efectivas cuando se introducen cuando los pacientes aún son niños pequeños en comparación con una etapa más avanzada de la niñez.

"Aunque el autismo es uno de los trastornos del neurodesarrollo más comunes, hay mucho sobre él que todavía no entendemos", dijo el autor principal Kaustubh Supekar, profesor asistente clínico de psiquiatría y ciencias del comportamiento de Stanford y facultad afiliada de Stanford HAI. "En este estudio, hemos demostrado que nuestro modelo de 'huellas dactilares' del cerebro impulsado por IA podría ser una herramienta nueva y poderosa para avanzar en el diagnóstico y el tratamiento".

“Necesitamos crear biomarcadores objetivos para el autismo”, agregó Supekar, “y las huellas dactilares del cerebro nos acercan un paso más. Esperamos que el enfoque demostrado en nuestro estudio pueda diagnosticar el autismo durante la ventana de oportunidad cuando las intervenciones son más efectivas al máximo”.

Enlaces relacionados:
Universidad de Stanford  

New
Medical Radiographic X-Ray Machine
TR30N HF
New
Breast Localization System
MAMMOREP LOOP
Portable Color Doppler Ultrasound Scanner
DCU10
Ultrasonic Pocket Doppler
SD1

Canales

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.