Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

Algoritmo utiliza IRM sin procesar para predecir si alguien tendrá un paro cardíaco y cuándo

Por el equipo editorial de MedImaging en español
Actualizado el 12 Apr 2022
Print article
Imagen: IA predice si alguien experimentará un paro cardíaco y cuándo (Fotografía cortesía de Pexels)
Imagen: IA predice si alguien experimentará un paro cardíaco y cuándo (Fotografía cortesía de Pexels)

Un algoritmo creado para evaluar los patrones de cicatriz en el tejido cardíaco del paciente puede predecir arritmias potencialmente mortales con mayor precisión que los médicos. El nuevo enfoque basado en inteligencia artificial puede predecir si un paciente podría morir de un paro cardíaco y cuándo.

La tecnología, construida por científicos de la Universidad Johns Hopkins (Baltimore, MD, EUA) a partir de imágenes sin procesar de los corazones enfermos y los antecedentes de los pacientes, mejora significativamente las predicciones de los médicos y revolucionará la toma de decisiones clínicas y aumentará la supervivencia de arritmias cardíacas repentinas y letales, una de las condiciones más mortales y desconcertantes de la medicina. El equipo es el primero en utilizar redes neuronales para crear una evaluación de supervivencia personalizada para cada paciente con enfermedad cardíaca. Estas medidas de riesgo brindan con alta precisión la posibilidad de una muerte cardíaca súbita durante 10 años y cuándo es más probable que suceda.

La tecnología de aprendizaje profundo se llama Estudio de supervivencia del riesgo de arritmia cardíaca, o SSCAR. El nombre alude a la cicatrización cardíaca causada por una enfermedad cardíaca que a menudo resulta en arritmias letales y es la clave de las predicciones del algoritmo. El equipo usó imágenes cardíacas mejoradas con contraste que visualizan la distribución de cicatrices de cientos de pacientes reales con cicatrices cardíacas para entrenar un algoritmo para detectar patrones y relaciones que no son visibles a simple vista. El análisis clínico actual de imágenes cardíacas extrae solo características simples de la cicatriz, como el volumen y la masa, lo que infrautiliza gravemente lo que se demuestra en este trabajo como datos críticos.

El equipo entrenó una segunda red neuronal para aprender de 10 años de datos clínicos estándar de pacientes, 22 factores como la edad, el peso, la raza y el uso de medicamentos recetados de los pacientes. Las predicciones de los algoritmos no solo fueron significativamente más precisas en cada medida que los médicos , se validaron en pruebas con una cohorte de pacientes independientes de 60 centros de salud en los EUA, con diferentes antecedentes cardíacos y diferentes datos de imágenes, lo que sugiere que la plataforma podría adoptarse en cualquier lugar. El equipo ahora está trabajando para construir algoritmos para detectar otras enfermedades cardíacas. Según los investigadores, el concepto de aprendizaje profundo podría desarrollarse para otros campos de la medicina que se basan en el diagnóstico visual.

"La muerte cardíaca súbita causada por arritmia representa hasta el 20% de todas las muertes en todo el mundo y sabemos poco sobre por qué sucede o cómo saber quién está en riesgo", dijo la autora principal Natalia Trayanova, profesora de ingeniería biomédica y medicina. "Hay pacientes que pueden tener un bajo riesgo de muerte cardíaca súbita que reciben desfibriladores que quizás no necesiten y luego hay pacientes de alto riesgo que no reciben el tratamiento que necesitan y podrían morir en la flor de su vida. Lo que nuestro algoritmo puede hacer es determinar quién está en riesgo de muerte cardíaca y cuándo ocurrirá, lo que permite a los médicos decidir exactamente qué se debe hacer".

"Esto tiene el potencial de dar forma significativa a la toma de decisiones clínicas con respecto al riesgo de arritmia y representa un paso esencial para llevar el pronóstico de la trayectoria del paciente a la era de la inteligencia artificial", agregó Trayanova, codirectora de Alianza para la Innovación en el Diagnóstico y el Tratamiento Cardiovascular. "Representa la tendencia de fusionar la inteligencia artificial, la ingeniería y la medicina como el futuro de la atención médica".

 

Enlaces relacionados:
Universidad Johns Hopkins  


Print article
Radcal
CIRS -  MIRION

Canales

Radiografía

ver canal
Imagen: qTrack es una plataforma de gestión de salud pulmonar completa (Fotografía cortesía de Qure AI)

Sistemas de RD portátiles integrados con IA de rayos X de tórax automatizados mejoran las capacidades de diagnóstico

MinXray, Inc. (Northbrook, IL, EUA) ha mejorado aún más las capacidades de diagnóstico de sus sistemas de radiografía digital con la incorporación de la solución... Más

Ultrasonido

ver canal
Imagen: La IA se puede usar para identificar nódulos tiroideos benignos y reducir biopsias innecesarias (Fotografía cortesía de Pexels)

IA identifica nódulos tiroideos no cancerosos en imágenes de ultrasonido y reduce las biopsias

Los nódulos tiroideos son muy comunes. La biopsia por aspiración con aguja fina se utiliza para diagnosticar el cáncer de tiroides. Sin embargo, la mayoría de las biopsias producen... Más

TI en Imaginología

ver canal
Imagen: Cómo funciona el manejo de imágenes médicas de Nucleus.io (Fotografía cortesía de NucleusHealth)

Plataforma para el manejo de imágenes agiliza los planes de tratamiento

Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... Más

Industria

ver canal
Imagen: La reunión anual de la RSNA es la conferencia de imágenes médicas más grandes del mundo (Fotografía cortesía de la RSNA)

La RSNA 2022 ve un aumento en las presentaciones de resúmenes antes de la reunión anual

La Sociedad Radiológica de América del Norte (RSNA, Oak Brook, IL, EUA) ha anunciado que se han presentado casi 10.400 resúmenes científicos y educativos para la 108.... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.