Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
10 ago 2022 - 12 ago 2022

Sistema de aprendizaje automático basado en resonancia magnética diagnostica la enfermedad de Alzheimer con un solo escáner cerebral

Por el equipo editorial de MedImaging en español
Actualizado el 22 Jun 2022
Print article
Imagen: Un solo escaneo cerebral puede diagnosticar la enfermedad de Alzheimer (Fotografía cortesía de Colegio Imperial)
Imagen: Un solo escaneo cerebral puede diagnosticar la enfermedad de Alzheimer (Fotografía cortesía de Colegio Imperial)

La enfermedad de Alzheimer es la forma más común de demencia, y aunque la mayoría de las personas con Alzheimer la desarrollan después de los 65 años, las personas menores de esta edad también pueden desarrollarla. Los síntomas más frecuentes de la demencia son la pérdida de memoria y las dificultades para pensar, resolver problemas y hablar. Actualmente, los médicos utilizan una serie de pruebas para diagnosticar la enfermedad de Alzheimer, incluidas pruebas cognitivas y de memoria y escáneres cerebrales. Los escaneos se utilizan para comprobar los depósitos de proteínas en el cerebro y la contracción del hipocampo, el área del cerebro vinculada a la memoria. Todas estas pruebas pueden tomar varias semanas, tanto para organizar como para procesar. Ahora, un nuevo método requiere solo uno de estos: un escáner cerebral de imágenes por resonancia magnética (IRM) tomado en una máquina estándar de 1,5 Tesla, que se encuentra comúnmente en la mayoría de los hospitales.

Investigadores del Colegio Imperial de Londres (Londres, Reino Unido) utilizaron tecnología de aprendizaje automático para observar las características estructurales dentro del cerebro, incluso en regiones que no estaban previamente asociadas con la enfermedad de Alzheimer. La ventaja de la técnica es su simplicidad y el hecho de que puede identificar la enfermedad en una etapa temprana cuando puede ser muy difícil de diagnosticar. Aunque no existe una cura para la enfermedad de Alzheimer, obtener un diagnóstico rápido en una etapa temprana ayuda a los pacientes. Les permite acceder a ayuda y apoyo, recibir tratamiento para controlar sus síntomas y planificar para el futuro. Ser capaz de identificar con precisión a los pacientes en una etapa temprana de la enfermedad también ayudará a los investigadores a comprender los cambios cerebrales que desencadenan la enfermedad y respaldar el desarrollo y los ensayos de nuevos tratamientos.

Los investigadores adaptaron un algoritmo desarrollado para la clasificación de tumores cancerosos y lo aplicaron al cerebro. Dividieron el cerebro en 115 regiones y asignaron 660 características diferentes, como tamaño, forma y textura, para evaluar cada región. Luego entrenaron el algoritmo para identificar dónde los cambios en estas características podrían predecir con precisión la existencia de la enfermedad de Alzheimer. Utilizando datos de la Iniciativa de Neuroimagen de la Enfermedad de Alzheimer, el equipo probó su método en imagenes de escaneos cerebrales de más de 400 pacientes con Alzheimer en etapa temprana y tardía, controles sanos y pacientes con otras afecciones neurológicas, incluida la demencia frontotemporal y la enfermedad de Parkinson. También lo probaron con datos de más de 80 pacientes que se sometieron a pruebas de diagnóstico de Alzheimer en el Imperial College Healthcare NHS Trust.

Los investigadores encontraron que en el 98 % de los casos, el sistema de aprendizaje automático basado en resonancia magnética por sí solo pudo predecir con precisión si el paciente tenía la enfermedad de Alzheimer o no. También fue capaz de distinguir entre la etapa temprana y avanzada de la enfermedad de Alzheimer con una precisión bastante alta, en el 79 por ciento de los pacientes. El nuevo sistema también detectó cambios en áreas del cerebro que no estaban previamente asociadas con la enfermedad de Alzheimer, incluido el cerebelo (la parte del cerebro que coordina y regula la actividad física) y el diencéfalo ventral (vinculado a los sentidos, la vista y el oído). Esto abre nuevas vías potenciales para la investigación en estas áreas y sus vínculos con la enfermedad de Alzheimer.

“Actualmente, ningún otro método simple y ampliamente disponible puede predecir la enfermedad de Alzheimer con este nivel de precisión, por lo que nuestra investigación es un importante paso adelante”, dijo el profesor Eric Aboagye, del Departamento de Cirugía y Cáncer del Imperial, quien dirigió la investigación. "Muchos pacientes que se presentan con Alzheimer en las clínicas de la memoria también tienen otras afecciones neurológicas, pero incluso dentro de este grupo, nuestro sistema pudo distinguir a los pacientes que tenían Alzheimer de los que no".

“Esperar un diagnóstico puede ser una experiencia horrible para los pacientes y sus familias”, agregó el profesor Aboagye. “Si pudiéramos reducir la cantidad de tiempo que tienen que esperar, hacer que el diagnóstico sea un proceso más simple y reducir parte de la incertidumbre, sería de gran ayuda. Nuestro nuevo método también pudo identificar pacientes en etapa temprana para ensayos clínicos de nuevos tratamientos farmacológicos o cambios en el estilo de vida, lo que actualmente es muy difícil de hacer”.

"Aunque los neurorradiólogos ya interpretan las resonancias magnéticas para ayudar a diagnosticar la enfermedad de Alzheimer, es probable que haya características de las exploraciones que no sean visibles, incluso para los especialistas", explicó el Dr. Paresh Malhotra, neurólogo consultor del Imperial College Healthcare NHS Trust e investigador en Departamento de Ciencias del Cerebro del Imperial. "Usar un algoritmo capaz de seleccionar texturas y características estructurales sutiles en el cerebro que se ven afectadas por el Alzheimer realmente podría mejorar la información que podemos obtener de las técnicas de imagen estándar".

Enlaces relacionados:
Colegio Imperial de Londres  


Print article
CIRS -  MIRION
Radcal

Canales

Radiografía

ver canal
Imagen: El nuevo detector Lux 35 es elegante, sin vidrio y liviano (Fotografía cortesía de Carestream)

El detector Lux 35 de Carestream gana el premio Frost & Sullivan a la innovación de nuevos productos

Carestream Health (Rochester, NY, EUA) fue el primero en introducir en el mercado un detector inalámbrico del tamaño de un casete y continúa liderando el camino en innovación... Más

Ultrasonido

ver canal
Imagen: La plataforma de IA se amplía a un abanico de aplicaciones clínicas (Fotografía cortesía de Caption Health)

Plataforma tecnológica combina ultrasonido con IA para detección temprana de enfermedades cardíacas

El ultrasonido es una herramienta de diagnóstico segura y altamente efectiva, pero puede ser difícil de dominar, requiere años de capacitación especializada para aprender y... Más

Imaginología General

ver canal
Imagen: La IA se desempeña tan bien como los  especialistas médicos en el análisis de la enfermedad pulmonar (Fotografía cortesía de la Universidad de Nagoya)

IA diagnostica enfermedades pulmonares a partir de imágenes de TC con igual precisión que especialistas médicos

Los médicos han esperado mucho tiempo por un medio para diagnosticar la fibrosis pulmonar idiopática de forma temprana, una enfermedad potencialmente mortal que puede dejar cicatrices en... Más

TI en Imaginología

ver canal
Imagen: Cómo funciona el manejo de imágenes médicas de Nucleus.io (Fotografía cortesía de NucleusHealth)

Plataforma para el manejo de imágenes agiliza los planes de tratamiento

Un conjunto de soluciones de software del ecosistema de imágenes proporciona accesibilidad segura a las imágenes médicas, mejorando los flujos de trabajo y la atención a los pacientes. La plataforma... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.