Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Método revolucionario combina fMRI con aprendizaje automático para predecir riesgo de mortalidad en pacientes de UCI con lesión cerebral grave

Por el equipo editorial de MedImaging en español
Actualizado el 26 Sep 2023
Imagen: La nueva técnica puede predecir qué pacientes se recuperarán de una lesión cerebral grave con una precisión del 80 % (Fotografía cortesía de Freepik)
Imagen: La nueva técnica puede predecir qué pacientes se recuperarán de una lesión cerebral grave con una precisión del 80 % (Fotografía cortesía de Freepik)

Las lesiones cerebrales graves, ya sea que se deriven de un derrame cerebral, un paro cardíaco o un evento traumático, pueden tener consecuencias que alteran la vida de los pacientes y sus familias. En el caso de los pacientes ingresados en la unidad de cuidados intensivos (UCI) por lesión cerebral, se cierne una gran incertidumbre en sus familiares y proveedores de atención médica sobre las posibilidades de recuperación, ya sea parcial o completa. Ahora, los investigadores han desarrollado un método innovador para predecir qué pacientes de la UCI pueden sobrevivir a una lesión cerebral grave.

Investigadores de la Western University (Ontario, Canadá) combinaron imágenes por resonancia magnética funcional (fMRI) con algoritmos avanzados de aprendizaje automático para abordar uno de los desafíos más apremiantes en cuidados intensivos: predecir los resultados de la recuperación después de lesiones cerebrales importantes. Trabajando junto con neurólogos, los investigadores monitorearon la actividad cerebral en 25 pacientes de la UCI durante los primeros días después de sus lesiones cerebrales. Su objetivo era descubrir si estas lecturas podían indicar qué pacientes sobrevivirían en última instancia. Trabajos anteriores del equipo habían demostrado que los posibles signos de recuperación podían captarse mediante la forma en que las diferentes regiones del cerebro interactuaban entre sí. Mantener estas conexiones interregionales es crucial para la restauración de la conciencia.

Los investigadores lograron un gran avance cuando descubrieron que podían combinar los datos de la resonancia magnética funcional con tecnología de aprendizaje automático. Esta innovadora integración les permitió predecir con un 80 % de precisión qué pacientes tenían probabilidades de recuperarse, una tasa que supera el estándar de atención actual. A pesar de este desarrollo prometedor, el equipo enfatiza que su método predictivo no es perfecto y merece investigación y validación adicionales.

“La inteligencia artificial moderna ha demostrado capacidades predictivas increíbles. Combinar esto con nuestras técnicas de imágenes existentes fue suficiente para predecir mejor quién se recuperará de sus lesiones”, afirmó Matthew Kolisnyk, estudiante de posgrado de la Western University.

Enlaces relacionados:
Western University  

Radiation Safety Barrier
RayShield Intensi-Barrier
X-Ray Illuminator
X-Ray Viewbox Illuminators
Mammography System (Analog)
MAM VENUS
Ultrasound Table
Women’s Ultrasound EA Table

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.