Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Herramienta de resonancia magnética basada enIA supera métodos actuales de diagnóstico de tumores cerebrales

Por el equipo editorial de MedImaging en español
Actualizado el 17 Apr 2024
Print article
Imagen: La herramienta de aprendizaje profundo aprovecha identificación de patrones de comportamiento en imágenes específicas de cada tumor (Fotografía cortesía de VHIO)
Imagen: La herramienta de aprendizaje profundo aprovecha identificación de patrones de comportamiento en imágenes específicas de cada tumor (Fotografía cortesía de VHIO)

El glioblastoma multiforme, las metástasis de tumores sólidos al cerebro y el linfoma primario del sistema nervioso central comprenden hasta el 70 % de todos los cánceres cerebrales malignos. Diferenciar entre estas neoplasias malignas es crucial porque cada tipo exige una estrategia de tratamiento específica, pero presenta un desafío clínico. Actualmente, el diagnóstico no invasivo de los tumores cerebrales se basa en el análisis de imágenes por resonancia magnética (RMN) antes y después de la administración de agentes de contraste. Sin embargo, un diagnóstico concluyente a menudo requiere procedimientos neuroquirúrgicos, que pueden afectar negativamente la calidad de vida del paciente. Ahora, una herramienta de aprendizaje profundo aprovecha los datos de las imágenes por resonancia magnética (RMN) para clasificar con precisión los tumores cerebrales, ayudando así a los médicos a tomar decisiones informadas.

El Diagnóstico en Regiones de Mejora del Contraste de Susceptibilidad para Neuroncología (DISCERN) es una herramienta de aprendizaje profundo y de acceso abierto desarrollada conjuntamente por investigadores del Instituto de Oncología Vall d'Hebron (VHIO, Barcelona, España) y el Hospital Universitario de Bellvitge (Barcelona, España). Se basa en el entrenamiento de patrones utilizando modelos de inteligencia artificial (IA) extraídos de información estándar de resonancia magnética. DISCERN interpreta los datos espaciales y temporales completos disponibles en las resonancias magnéticas convencionales para reconocer patrones específicos de tumores.

Al emplear el aprendizaje profundo, el sistema aprende a distinguir entre las características de varios tumores basándose en exploraciones por resonancia magnética de pacientes previamente diagnosticados. Un estudio liderado por el VHIO demostró la capacidad de DISCERN para facilitar el diagnóstico preciso de tumores cerebrales mediante resonancia magnética de perfusión, superando la precisión de los métodos de diagnóstico tradicionales. Con una tasa de precisión del 78 % en la clasificación de estos cánceres cerebrales comunes, DISCERN representa un avance significativo en el campo. Los desarrolladores han hecho accesible DISCERN a través de una aplicación de código abierto fácil de usar para promover su uso generalizado en la investigación clínica y mejorar la reproducibilidad de los hallazgos.

“DISCERN es una herramienta informática de apoyo al diagnóstico que facilita la clasificación de tumores cerebrales para ayudar a guiar la toma de decisiones médicas por parte de equipos multidisciplinarios con respecyo a la necesidad y el tipo de cirugía necesaria para confirmar el diagnóstico”, afirma Carles Majós, neurorradiólogo clínico e investigador del Hospital Universitario de Bellvitge.

Enlaces relacionados:
VHIO
Hospital Universitario de Bellvitge

Miembro Plata
X-Ray QA Meter
T3 AD Pro
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Ultrasound Table
Women’s Ultrasound EA Table
New
Half Apron
Demi

Print article

Canales

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

Imaginología General

ver canal
Imagen: El cinturón de TC por ultrasonido podría facilitar el seguimiento de pacientes con afecciones cardíacas y pulmonares (foto cortesía de la Universidad de Bath)

Dispositivo portátil pionero ofrece una alternativa revolucionaria a las tomografías computarizadas

Actualmente, los pacientes con afecciones como insuficiencia cardíaca, neumonía o dificultad respiratoria suelen requerir múltiples procedimientos de diagnóstico por imagen... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.