Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Mapa abdominal impulsado por IA permite la detección temprana del cáncer

Por el equipo editorial de MedImaging en español
Actualizado el 07 Feb 2025
Print article
Imagen: Dos cortes de TC abdominal, estándar a la izquierda y segmentación de órganos de AbdomenAtlas a la derecha (Foto cortesía de la Universidad Johns Hopkins)
Imagen: Dos cortes de TC abdominal, estándar a la izquierda y segmentación de órganos de AbdomenAtlas a la derecha (Foto cortesía de la Universidad Johns Hopkins)

Los radiólogos recurren cada vez más a modelos de visión artificial basados en inteligencia artificial (IA) para ayudar con la laboriosa tarea de analizar exploraciones médicas. Sin embargo, estos modelos requieren conjuntos de datos amplios y meticulosamente etiquetados para generar resultados confiables y precisos, lo que significa que los radiólogos aún deben dedicar una cantidad considerable de tiempo a la anotación de imágenes médicas. Para abordar este desafío, los investigadores han aprovechado la IA para crear el conjunto de datos más extenso y completo de órganos abdominales hasta la fecha, diseñado para ayudar a los radiólogos a identificar tumores y otras afecciones médicas de manera rápida y precisa.

Un equipo de investigadores de todo el mundo, dirigido por la Universidad Johns Hopkins (Baltimore, MD, EUA), ha desarrollado AbdomenAtlas, el conjunto de datos de tomografía computarizada (TC) abdominal más grande disponible, con más de 45,000 exploraciones 3D de TC que representan 142 estructuras anatómicas anotadas. Estas exploraciones se obtuvieron de 145 hospitales de todo el mundo, lo que hace que AbdomenAtlas sea más de 36 veces más grande que el competidor más cercano, TotalSegmentator V2.

El conjunto de datos y sus aplicaciones se presentaron en una edición reciente de Medical Image Analysis. Anteriormente, los conjuntos de datos de órganos abdominales fueron compilados por radiólogos que identificaban y etiquetaban manualmente cada órgano en las tomografías, un proceso laborioso que requería miles de horas de trabajo humano. Los investigadores aceleraron este proceso de anotación aprovechando algoritmos de IA. Con la ayuda de 12 radiólogos expertos y médicos en formación adicionales, completaron en menos de dos años una tarea que habría llevado a los anotadores humanos más de dos milenios.

El método desarrollado por los investigadores combina tres modelos de IA entrenados con conjuntos de datos públicos de tomografías abdominales etiquetadas para predecir anotaciones en exploraciones previamente no etiquetadas. Luego, la IA genera mapas de atención codificados por colores que resaltan las áreas que necesitan refinamiento, permitiendo a los radiólogos centrar su revisión en las secciones más críticas de las predicciones del modelo. Este proceso iterativo (predicción de IA seguida de validación humana) acelera enormemente el flujo de trabajo de anotación, logrando una velocidad 10 veces mayor en la identificación de tumores y 500 veces mayor en la anotación de órganos, según los investigadores.

Este proceso no solo aumenta el alcance, la escala y la precisión del conjunto de datos, sino que también evita sobrecargar a los radiólogos involucrados. El resultado es lo que el equipo describe como el conjunto de datos de órganos abdominales completamente anotados más grande disponible. Además, los investigadores continúan expandiendo el conjunto de datos al agregar más exploraciones, órganos y tumores tanto reales como artificiales, mejorando aún más el entrenamiento de los modelos de IA para identificar el cáncer, diagnosticar enfermedades e incluso crear gemelos digitales de pacientes de la vida real.

AbdomenAtlas también proporciona un valioso punto de referencia que permite a otros grupos de investigación evaluar la precisión de sus algoritmos de segmentación médica. Según el equipo de Hopkins, cuanto más completo sea el conjunto de datos utilizado para evaluar estos algoritmos, más confiables y efectivos serán los modelos en escenarios clínicos complejos. Los investigadores planean hacer que AbdomenAtlas esté disponible públicamente y están introduciendo nuevos desafíos de segmentación médica para fomentar el desarrollo de algoritmos de IA que no solo sean teóricamente sólidos, sino también prácticos, eficientes y confiables en entornos clínicos. A pesar de los avances que representa AbdomenAtlas, sus creadores destacan que solo abarca el 0.05 % de las tomografías computarizadas adquiridas anualmente en Estados Unidos, por lo que están haciendo un llamado a otras instituciones para ayudar a expandir este recurso crucial.

"La colaboración entre instituciones es crucial para acelerar el intercambio de datos, la anotación y el desarrollo de la IA", escribieron los investigadores. "Esperamos que nuestro AbdomenAtlas pueda sentar las bases para ensayos clínicos a mayor escala y ofrecer oportunidades excepcionales a los profesionales de la comunidad de imágenes médicas".

New
Biopsy Software
Affirm® Contrast
Ultra-Flat DR Detector
meX+1717SCC
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Digital Radiographic System
OMNERA 300M

Print article

Canales

RM

ver canal
Imagen: las imágenes de RM axial abreviadas muestran una masa irregular de 7 mm con margen irregular (foto cortesía de Radiology)

Examen de resonancia magnética más corto detecta eficazmente el cáncer en mamas densas

Las mujeres con mamas extremadamente densas se enfrentan a un mayor riesgo de no recibir un diagnóstico de cáncer de mama, ya que el tejido glandular y fibroso denso puede ocultar los tumores... Más

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.