Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Eventos

14 mar 2019 - 17 mar 2019

Inteligencia artificial para identificar melanomas

Por el equipo editorial de Medimaging en español
Actualizado el 25 Jun 2018
Print article
Imagen: Un nuevo estudio afirma que los algoritmos de aprendizaje profundo vencieron a los dermatólogos en la interpretación de las dermatoscopias (Fotografía cortesía de Dreamstime).
Imagen: Un nuevo estudio afirma que los algoritmos de aprendizaje profundo vencieron a los dermatólogos en la interpretación de las dermatoscopias (Fotografía cortesía de Dreamstime).
Las redes neuronales convolucionales (CNN, por sus siglas en inglés) entrenadas de inteligencia artificial (IA) son mejores que los dermatólogos experimentados para detectar el cáncer de piel, según un nuevo estudio.

Investigadores de la Universidad de Heidelberg (Alemania), la Universidad de Passau (Alemania) y otras instituciones, entrenaron al Inception CNN de Google para identificar el cáncer de piel mostrándole más de 100.000 imágenes almacenadas de melanomas malignos, así como lunares y nevos benignos. Luego compararon el desempeño de la CNN con el de 58 dermatólogos internacionales a través de un conjunto de pruebas de 100 imágenes, utilizando dos niveles de evidencia; el nivel I incluía imágenes de dermatoscopia por sí sola, y el nivel II incluía dermatoscopia más información clínica y fotografías.

Se les pidió a los dermatólogos que primero hicieran un diagnóstico de melanoma maligno o de lunar benigno solo a partir de las imágenes dermatoscópicas (nivel I) y tomaran una decisión sobre cómo tratarlo (es decir, cirugía, seguimiento a corto plazo o ninguna acción necesaria). Cuatro semanas después, se les proporcionó información clínica adicional sobre el paciente (incluida la edad, el sexo y la posición de la lesión) y las imágenes de primeros planos de los mismos 100 casos (nivel II), y se les solicitó una vez más su diagnóstico y diagnóstico y las decisiones de manejo.

Los resultados revelaron que en el nivel I, los dermatólogos detectaron con exactitud un promedio de 86,6% de los melanomas, e identificaron correctamente un promedio de 71,3% de las lesiones que no eran malignas. Sin embargo, cuando la CNN se reajustó al mismo nivel que los médicos para identificar correctamente los lunares benignos (71,3%), la CNN detectó con éxito el 95% de los melanomas. En el nivel II, los dermatólogos mejoraron su desempeño, diagnosticando con exactitud el 88,9% de los melanomas malignos y el 75,7% que no eran cancerosos. El estudio fue publicado el 28 de mayo de 2018 en la revista Annals of Oncology.

“La CNN pasó por alto menos melanomas, lo que significa que tenía una sensibilidad más alta que la de los dermatólogos, y diagnosticó erróneamente menos lunares benignos como melanomas malignos, lo que significa que tenía una especificidad mayor; esto daría como resultado menos cirugías innecesarias”, dijo el autor principal, el profesor Holger Haenssle, MD, de la Universidad de Heidelberg. “Cuando los dermatólogos recibieron más información clínica e imágenes en el nivel II, su desempeño diagnóstico mejoró. Sin embargo, la CNN, que todavía trabajaba únicamente a partir de imágenes dermatoscópicas sin información clínica adicional, siguió superando las capacidades de diagnóstico de los médicos”.

“Esta CNN puede servir a los médicos que participan en el cribado del cáncer de piel como una ayuda en su decisión de tomar una biopsia de una lesión o no hacerlo. La mayoría de los dermatólogos ya usan sistemas de dermatoscopia digital para obtener imágenes y almacenar lesiones para la documentación y el seguimiento “, concluyó el profesor Haenssle. “La CNN puede evaluar fácil y rápidamente la imagen almacenada para obtener una ‘opinión experta’ sobre la probabilidad de melanoma. Actualmente estamos planificando estudios prospectivos para evaluar el impacto de la CNN en la vida real para médicos y pacientes”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático basados en representaciones de datos de aprendizaje, en oposición a los algoritmos específicos de tareas. Implica algoritmos de red neuronal que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción de características y la transformación, con cada capa sucesiva utilizando la salida de la capa anterior como entrada, formando así una representación jerárquica.

Enlace relacionado:
Universidad de Heidelberg
Universidad de Passau


Print article
Italray
Radcal

Canales

Radiografía

ver canal
Imagen: Las pruebas de aisladores cristalinos pueden medir los niveles de radiación de fondo (Fotografía cortesía de la Universidad Estatal de Carolina del Norte).

Unas pruebas cristalinas evalúan rápidamente la exposición a la radiación

Un estudio nuevo afirma que el análisis de los aisladores cristalinos que se encuentran en la mayoría de los dispositivos electrónicos modernos, podría facilitar la dosimetría de respuesta de emergencia... Más

Ultrasonido

ver canal
Imagen: El aprendizaje profundo y la inteligencia artificial (AI) transforman los exámenes de ultrasonido obstétrico en una experiencia más fácil, más rápida, más consistente y mucho más exacta (Fotografía cortesía de SonoScape).

Una tecnología con IA automatiza el flujo de trabajo del ultrasonido obstétrico

El algoritmo S-fetus de SonoScape Medical (Shenzhen, China), diseñado para el sistema de ultrasonido S60, ha sido diseñado para simplificar un procedimiento de ultrasonido obstétrico estándar reduciéndolo... Más

Medicina Nuclear

ver canal
Imagen: La plataforma de radiocirugía giroscópica ZAP-X (Fotografía cortesía de ZAP Surgical Systems).

Una plataforma de radiocirugía giroscópica hace la ablación de tumores de cerebro

Una plataforma nueva de radioterapia (RT) administra radiocirugía estereotáctica de dosis altas (SRS) para extirpar de forma no invasiva los tumores cerebrales y otras afecciones intracraneales seleccionadas.... Más

TI en Imaginología

ver canal
Imagen: El software empresarial uPath proporciona mejores herramientas de patología digital (Fotografía cortesía de Roche).

Un software de patología digital mejora la eficiencia del flujo de trabajo

Una plataforma de software novedosa reduce drásticamente los tiempos de generación de imágenes, integra el análisis automatizado de imágenes y permite un mejor intercambio de casos entre patólogos.... Más

Industria

ver canal
Imagen: El crecimiento del mercado mundial de imágenes mamarias es impulsado principalmente por los avances tecnológicos y la creciente incidencia del cáncer de mama (Fotografía cortesía de iStock).

El mercado mundial de imagenología mamaria valdrá 4.600 millones de dólares en el año 2023

Se proyecta que el mercado mundial de imágenes mamarias crezca a una TCAC de 8,0% desde 3.100 millones de dólares en 2018 para llegar a 4.600 millones de dólares en 2023, impulsado principalmente por los... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.