Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




La radiómica predice los beneficios que los pacientes pueden obtener de la quimioterapia

Por el equipo editorial de MedImaging en español
Actualizado el 10 Apr 2019
Imagen: Los mapas de características radiológicas muestran las diferencias entre las lesiones en los respondedores y los que no responden en la TC pretratamiento (Fotografía cortesía de la Clínica Cleveland).
Imagen: Los mapas de características radiológicas muestran las diferencias entre las lesiones en los respondedores y los que no responden en la TC pretratamiento (Fotografía cortesía de la Clínica Cleveland).
Según un estudio nuevo, los datos recuperados de las imágenes de tomografía computarizada (TC) pueden ser capaces de predecir qué pacientes de cáncer de pulmón responderán a la quimioterapia.

Investigadores de la Universidad Case Western Reserve (CWRU; Cleveland, OH, EUA), la Clínica Cleveland (CC; OH, EUA) y otras instituciones, analizaron retrospectivamente datos de 125 pacientes con cáncer de pulmón no microcítico (CPNM) tratados con quimioterapia doble con platino basada en pemetrexed, para identificar el papel de las características de la textura de la radiómica, tanto dentro como fuera del nódulo, en la predicción del tiempo de progresión (TTP), la supervivencia global (SG) y la respuesta a la quimioterapia.

Los pacientes se dividieron al azar en dos conjuntos, con la restricción de que debía haber un número igual de respondedores y no respondedores en el conjunto de entrenamiento. El conjunto de entrenamiento comprendía 53 pacientes con CPNM, y el conjunto de validación comprendía 72 pacientes. Se utilizó un clasificador de aprendizaje automático entrenado, con características de textura radiológica extraídas de regiones intra y peritumorales de imágenes de TC sin contraste para predecir la respuesta a la quimioterapia. La firma de puntuación de riesgo radiómica se generó utilizando el operador de selección y contracción mínima absoluta, y también se evaluó la asociación de la firma radiómica con la TTP y la SG.

Los resultados mostraron que las características radiológicas derivadas del tumor y del área alrededor del tumor fueron capaces de diferenciar entre los pacientes que respondieron a la quimioterapia y los que no lo hicieron con una exactitud de 0,77. Además, las características radiológicas predijeron la TTP y la SG, y el análisis de la curva de decisión demostró que en términos de utilidad clínica, la firma de radiómica tenía un beneficio neto general más alto en la predicción de pacientes de alto riesgo que debían recibir tratamiento que las mediciones clínico-patológicas. El estudio fue publicado el 20 de marzo de 2019 en la revista Radiology: Artificial Intelligence.

“Este es el primer estudio que demuestra que los patrones de heterogeneidad o diversidad extraídos por computadora de fuera del tumor fueron predictivos de la respuesta a la quimioterapia”, dijo la coautora y autora principal, Mónica Khunger, MD, de la CC. “Esto es muy importante porque podría permitir predecir, antes de la terapia, qué pacientes con cáncer de pulmón probablemente respondan o no. Esto podría ayudar a identificar a los pacientes que probablemente no respondan a la quimioterapia para terapias alternativas como la radiación o la inmunoterapia”.

La radiómica es una extensión del diagnóstico asistido por computadora y se refiere a la cuantificación integral de los fenotipos tumorales mediante la extracción de un gran número de características de imagen cuantitativas para realizar minería de datos y medicina de precisión. En los últimos años, la radiografía ha extraído con éxito una variedad de características clínicamente relevantes, combinándolas en firmas, para determinar la probabilidad de malignidad de las lesiones de cáncer de mama identificadas.

Enlace relacionado:
Universidad Case Western Reserve
Clínica Cleveland


Ultrasound Table
Women’s Ultrasound EA Table
40/80-Slice CT System
uCT 528
Ultrasound Needle Guidance System
SonoSite L25
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: el Dr. Glenn Bauman, científico de LHSCRI, posa frente al escáner PET (Foto cortesía de LHSCRI).

Nueva solución de imagen mejora la supervivencia de los pacientes con cáncer de próstata recurrente

La detección del cáncer de próstata recurrente sigue siendo uno de los mayores desafíos en oncología, ya que los métodos de imagen estándar, como las g... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.