Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Thales AVS France

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
29 ago 2020 - 02 sep 2020
Virtual Venue

MicroARN permiten diferenciar los melanomas de los nevos

Por el equipo editorial de MedImaging en español
Actualizado el 23 Oct 2019
Print article
Imagen: La secuenciación de microARN y los algoritmos ópticos pueden detectar células de melanoma en los tumores de piel (Fotografía cortesía de Rodrigo Torres / UCSF).
Imagen: La secuenciación de microARN y los algoritmos ópticos pueden detectar células de melanoma en los tumores de piel (Fotografía cortesía de Rodrigo Torres / UCSF).
Un estudio nuevo muestra cómo una plataforma de discriminación óptica puede detectar características malignas en un tumor melanocítico utilizando patrones específicos de los microARN (miARN).

La nueva técnica, desarrollada en la Universidad de California, San Francisco (UCSF; EUA), la Universidad de Utah (Salt Lake City, EUA) y otras instituciones, aplica una tubería basada en el aprendizaje automático a un conjunto de datos que consta de características genéticas, características clínicas y secuenciación de microARN de próxima generación a muestras de tejidos, para diferenciar los melanomas y sus nevos precursores benignos adyacentes. La técnica de aprendizaje automático puede detectar ocho relaciones de expresión específicas de patrones de miARN en los cortes microdisecados.

Para el estudio, los investigadores examinaron 82 muestras de biopsia de lunares y melanomas malignos, 41 de cada tipo, tomadas de los registros médicos de la sección de dermatopatología de la UCSF. Luego compararon el nuevo método óptico de detección de células de melanoma maligno con los resultados reales registrados. Los resultados revelaron una sensibilidad del 81% y una especificidad del 88%, que no fue influenciada ni por la edad del paciente ni por la presencia de una gran cantidad de células benignas en el mismo tumor. El estudio fue publicado el 20 de junio de 2019 en la revista Journal of Investigative Dermatology.

“Descubrimos que al desarrollar un clasificador basado en una proporción de miARN diagnósticamente importante, podíamos proporcionar un biomarcador más robusto que fuera menos susceptible a los cambios en el contenido y la plataforma de las células tumorales”, dijo el autor principal, Rodrigo Torres, PhD, de la UCSF.

“Las ventajas de usar miARN para diferenciar tumores melanocíticos benignos y malignos incluyen el hecho de que son fáciles de obtener de los fluidos corporales, son estables, de bajo costo para medir y no requieren técnicas muy invasivas o una gran cantidad de tejido”.

Un miARN es un tramo corto de ARN no codificante que actúa para detener la producción de proteína por el ARN como y cuando está indicado, uniéndose típicamente a una parte del ARN que no está involucrada en la codificación de proteínas. Las variaciones del perfil de expresión de miARN entre los tejidos, las relaciones entre ellos y las características genéticas y clínicas pueden ayudar a identificar el tejido del que se origina un tumor.

Enlace relacionado:
Universidad de California, San Francisco
Universidad de Utah


Print article
Radcal

Canales

RM

ver canal
Imagen: la RMC revela la participación cardiaca en los pacientes con COVID-19 en recuperación (Fotografía cortesía de iStock)

RM revela participación cardiaca en los pacientes recuperados de COVID-19

La resonancia magnética cardiovascular (RMC) revela compromiso cardíaco e inflamación miocárdica en pacientes con COVID-19 recientemente recuperados, según un estudio nuevo. Investigadores del Hospital... Más

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.