Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Thales AVS France

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
15 jul 2020 - 19 jul 2020
Virtual Venue

Endoscopio ultraminiaturizado produce imágenes de alta calidad

Por el equipo editorial de MedImaging en español
Actualizado el 24 Dec 2019
Print article
Imagen: Imágenes capturadas con endoscopios en miniatura convencionales y el nuevo microendoscopio sin lente (Fotografía cortesía de Mark Foster/JHU)
Imagen: Imágenes capturadas con endoscopios en miniatura convencionales y el nuevo microendoscopio sin lente (Fotografía cortesía de Mark Foster/JHU)
Un estudio nuevo describe un microendoscopio, sin lentes, mínimamente invasivo, que reconstruye computacionalmente imágenes que son más claras y de mayor calidad que las convencionales basadas en lentes.

En desarrollo en la Universidad Johns Hopkins (JHU; Baltimore, MD, EUA), la Universidad de Harvard (Cambridge, MA, EUA) y otras instituciones, el nuevo microendoscopio utiliza una fibra multinúcleo para crear un sistema distal sin lentes que simultáneamente logre la miniaturización y un amplio campo de visión. Una rejilla de apertura codificada bloquea la luz al azar para crear una proyección en un patrón conocido, similar a hacer agujeros al azar en una hoja de papel y dejar que la luz brille a través de ellos. Esto crea una imagen confusa que puede proporcionar información sobre el origen de la luz. Esa información se puede reconstruir computacionalmente en una imagen más clara.

Además, el microendoscopio no requiere enfoque para observar objetos en diferentes planos. El “reenfoque” computacional puede determinar de dónde se originó la luz en el espacio 3D. Esto permite que el endoscopio sea físicamente más pequeño, aproximadamente del tamaño de unos pocos pelos humanos de ancho, que uno tradicional que requiere una lente de enfoque. En el futuro, los investigadores probarán el microendoscopio con procedimientos de etiquetado fluorescente en los que las neuronas activas del cerebro se etiquetarían e iluminarían, para determinar con qué precisión el endoscopio puede obtener imágenes de la actividad neuronal. El estudio fue publicado el 6 de diciembre de 2019 en la revista Science Advances.

“Durante miles de años, el objetivo ha sido hacer una imagen lo más clara posible. Ahora, gracias a la reconstrucción computacional, podemos capturar a propósito algo que se ve horrible y contraintuitivamente termina con una imagen final más clara”, dijo el autor principal, Mark Foster, PhD, del departamento de ingeniería eléctrica e informática de la JHU. “Por lo general, hay que sacrificar el tamaño o la calidad de la imagen. Hemos podido lograr ambas cosas con nuestro microendoscopio”.

Las cámaras sin lente basadas en imágenes de apertura codificada están diseñadas con factores de forma plana comparables a los de un sensor de imagen desnuda con distancias de trabajo variables. Para obtener imágenes, un objeto en el plano de muestra se ilumina con una fuente incoherente, y se captura una única instantánea de la luz dispersa utilizando la cámara en el extremo proximal de la fibra. Luego, se reconstruye una imagen de la escena utilizando la respuesta calibrada del sistema de fuentes puntuales individuales, el marco único de la respuesta del sistema del objeto y un algoritmo de reconstrucción de imagen.

Enlace relacionado:
Universidad Johns Hopkins
Universidad de Harvard


Print article
Radcal
Clear Image Devices

Canales

Radiografía

ver canal
Imagen: Esquema de un dispositivo para imágenes de rayos X de campo oscuro (Fotografía cortesía de la TUM)

Radiografías pulmonares de bajas dosis facilitan el diagnóstico del coronavirus

Un método novedoso de rayos X que implica una radiación significativamente menor que la tomografía computarizada (TC) puede ayudar a identificar las anomalías en la COVID-19. Desarrollado en la Universidad... Más

RM

ver canal
Imagen: El sistema Canon Vantage Orian 1,5T MR (Fotografía cortesía de Canon Medical Systems)

Acelerador para la resonancia magnética mejora la eficiencia diagnóstica

La innovadora tecnología Compressed SPEEDER, diseñada para el sistema médico Vantage Orian 1,5T MR de Canon (Tochigi, Japón), puede mejorar los tiempos de exploración de resonancia magnética (RM) al reconstruir... Más

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.