Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Imágenes médicas reconstruidas con IA pueden no ser confiables

Por el equipo editorial de MedImaging en español
Actualizado el 15 Jun 2020
Imagen: Imágenes con pequeñas perturbaciones estructurales (texto y símbolos) reconstruidas con IA (Fotografía cortesía de PNAS)
Imagen: Imágenes con pequeñas perturbaciones estructurales (texto y símbolos) reconstruidas con IA (Fotografía cortesía de PNAS)
Un estudio nuevo sugiere que las herramientas de aprendizaje profundo utilizadas para crear imágenes de alta calidad a partir de tiempos de escaneo cortos producen múltiples alteraciones y artefactos en los datos que podrían afectar el diagnóstico.

Investigadores de la Universidad de Oslo (Noruega), la Universidad de Cambridge (Reino Unido) y otras instituciones, realizaron un estudio para evaluar seis redes neuronales diferentes de inteligencia artificial (IA) entrenadas para crear imágenes mejoradas a partir de exámenes de resonancia magnética (RM) o de tomografía computarizada (TC). Las redes se alimentaron de datos diseñados para replicar tres posibles problemas: pequeñas perturbaciones; pequeños cambios estructurales; y cambios en la frecuencia de muestreo en comparación con los datos sobre los que se entrenó la IA. Para probar la capacidad de los sistemas de detectar pequeños cambios estructurales, el equipo agregó letras y símbolos de cartas de juego a las imágenes.

Los resultados mostraron que solo una de las redes pudo reconstruir estos detalles, pero las otras cinco presentaron problemas que iban desde la borrosidad hasta la eliminación casi completa de los cambios. Solo una de las redes neuronales produjo mejores imágenes a medida que los investigadores aumentaron la frecuencia de muestreo de los escaneos. Otra red se estancó, sin mejoras en la calidad; y en tres, las reconstrucciones disminuyeron en calidad a medida que aumentó el número de muestras. El sexto sistema de IA no permitió cambiar la frecuencia de muestreo. El estudio fue publicado el 11 de mayo de 2020, en la revista Proceedings of the National Academy of Sciences (PNAS).

“Te molestas un poco y el sistema de IA dice que la imagen del gato es de repente un camión de bomberos. Los investigadores deben comenzar a probar la estabilidad de estos sistemas. Lo que verán a gran escala es que muchos de estos sistemas de IA son inestables”, dijo el autor principal, Anders Hansen, PhD, de la Universidad de Cambridge. “El gran problema es que no existe una comprensión matemática de cómo funcionan estos sistemas de IA. Se convierten en una caja negra, y si no se prueban estas cosas correctamente, puede tener resultados completamente desastrosos”.

Las inestabilidades durante el escaneo pueden aparecer como ciertas perturbaciones pequeñas, casi indetectables (por ejemplo, debido al movimiento del paciente, que aparecen tanto en la imagen como en el dominio de muestreo, lo que resulta en artefactos en la reconstrucción; como pequeños cambios estructurales, por ejemplo, un tumor, que puede no ser capturado en la imagen reconstruida y diferentes tasas de muestreo que no coinciden con los datos con los que se entrenó el algoritmo de IA.

Enlace relacionado:
Universidad de Oslo
Universidad de Cambridge

New
Biopsy Software
Affirm® Contrast
Radiology Software
DxWorks
X-Ray Illuminator
X-Ray Viewbox Illuminators
Portable X-ray Unit
AJEX140H

Canales

RM

ver canal
Imagen: los investigadores utilizaron RM y pantalones inspirados en la NASA para mejorar las pruebas de esfuerzo y revelar problemas cardíacos ocultos (foto cortesía de UTA)

Nueva técnica de resonancia magnética revela problemas cardíacos ocultos

Las pruebas de esfuerzo tradicionales, realizadas en una máquina de resonancia magnética (RM), requieren que los pacientes permanezcan acostados, una posición que mejora artificialmente... Más

Ultrasonido

ver canal
Imagen: el ultrasonido focalizado puede detener el crecimiento de lesiones cerebrales debilitantes (Foto cortesía de Nature Biomedical Engineering; doi.org/10.1038/s41551-025-01390-z)

Nueva técnica sin incisiones detiene el crecimiento de lesiones cerebrales debilitantes

Las malformaciones cavernosas cerebrales (MCC), también conocidas como cavernomas, son agrupaciones anómalas de vasos sanguíneos que pueden formarse en el cerebro, la médula... Más

Medicina Nuclear

ver canal
Imagen: El estudio de imágenes de cáncer de próstata tiene como objetivo reducir la necesidad de biopsias (foto cortesía de Shutterstock)

Nuevo enfoque de imagen podría reducir la necesidad de biopsias para monitorear el cáncer de próstata

El cáncer de próstata es la segunda causa principal de muerte por cáncer en hombres en Estados Unidos. Sin embargo, la mayoría de los hombres mayores diagnosticados con esta... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.