Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Abbott Diagnostics

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

Imágenes médicas reconstruidas con IA pueden no ser confiables

Por el equipo editorial de MedImaging en español
Actualizado el 15 Jun 2020
Print article
Imagen: Imágenes con pequeñas perturbaciones estructurales (texto y símbolos) reconstruidas con IA (Fotografía cortesía de PNAS)
Imagen: Imágenes con pequeñas perturbaciones estructurales (texto y símbolos) reconstruidas con IA (Fotografía cortesía de PNAS)
Un estudio nuevo sugiere que las herramientas de aprendizaje profundo utilizadas para crear imágenes de alta calidad a partir de tiempos de escaneo cortos producen múltiples alteraciones y artefactos en los datos que podrían afectar el diagnóstico.

Investigadores de la Universidad de Oslo (Noruega), la Universidad de Cambridge (Reino Unido) y otras instituciones, realizaron un estudio para evaluar seis redes neuronales diferentes de inteligencia artificial (IA) entrenadas para crear imágenes mejoradas a partir de exámenes de resonancia magnética (RM) o de tomografía computarizada (TC). Las redes se alimentaron de datos diseñados para replicar tres posibles problemas: pequeñas perturbaciones; pequeños cambios estructurales; y cambios en la frecuencia de muestreo en comparación con los datos sobre los que se entrenó la IA. Para probar la capacidad de los sistemas de detectar pequeños cambios estructurales, el equipo agregó letras y símbolos de cartas de juego a las imágenes.

Los resultados mostraron que solo una de las redes pudo reconstruir estos detalles, pero las otras cinco presentaron problemas que iban desde la borrosidad hasta la eliminación casi completa de los cambios. Solo una de las redes neuronales produjo mejores imágenes a medida que los investigadores aumentaron la frecuencia de muestreo de los escaneos. Otra red se estancó, sin mejoras en la calidad; y en tres, las reconstrucciones disminuyeron en calidad a medida que aumentó el número de muestras. El sexto sistema de IA no permitió cambiar la frecuencia de muestreo. El estudio fue publicado el 11 de mayo de 2020, en la revista Proceedings of the National Academy of Sciences (PNAS).

“Te molestas un poco y el sistema de IA dice que la imagen del gato es de repente un camión de bomberos. Los investigadores deben comenzar a probar la estabilidad de estos sistemas. Lo que verán a gran escala es que muchos de estos sistemas de IA son inestables”, dijo el autor principal, Anders Hansen, PhD, de la Universidad de Cambridge. “El gran problema es que no existe una comprensión matemática de cómo funcionan estos sistemas de IA. Se convierten en una caja negra, y si no se prueban estas cosas correctamente, puede tener resultados completamente desastrosos”.

Las inestabilidades durante el escaneo pueden aparecer como ciertas perturbaciones pequeñas, casi indetectables (por ejemplo, debido al movimiento del paciente, que aparecen tanto en la imagen como en el dominio de muestreo, lo que resulta en artefactos en la reconstrucción; como pequeños cambios estructurales, por ejemplo, un tumor, que puede no ser capturado en la imagen reconstruida y diferentes tasas de muestreo que no coinciden con los datos con los que se entrenó el algoritmo de IA.

Enlace relacionado:
Universidad de Oslo
Universidad de Cambridge


Print article
Radcal
Sun Nuclear/Gammex

Canales

Radiografía

ver canal
Imagen: El sistema de rayos X intervencionistas Alphenix Sky + (Fotografía cortesía de Canon Medical)

Sistema de imagenología CBCT examina el cuerpo desde la cabeza hasta los dedos del pie

Un sistema novedoso de imágenes tridimensionales (3D) presenta un exclusivo brazo-C doble deslizante, que ofrece una flexibilidad que permite procedimientos de acceso radial con mayor facilidad.... Más

RM

ver canal
Imagen: Comparación de las imágenes de resonancia magnética procesadas por DystoniaNet (Fotografía cortesía del MEEI)

Combinación de resonancia magnética e IA pueden identificar instantáneamente la distonía focal

De acuerdo con un estudio nuevo, la conjunción de la resonancia magnética (RM) y la inteligencia artificial (IA) puede identificar a los pacientes con distonía en menos de un segundo. La nueva plataforma,... Más

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2020 Globetech Media. All rights reserved.