Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.
18 abr 2021 - 23 abr 2021
Virtual Venue

Imágenes en 3D ofrece conocimientos sobre la participación pulmonar en la COVID-19

Por el equipo editorial de MedImaging en español
Actualizado el 02 Sep 2020
Print article
Imagen: Reconstrucción en 3D alrededor de un alvéolo pulmonar con membrana hialina (amarillo) (Fotografía cortesía de Tim Salditt/Universidad de Göttingen)
Imagen: Reconstrucción en 3D alrededor de un alvéolo pulmonar con membrana hialina (amarillo) (Fotografía cortesía de Tim Salditt/Universidad de Göttingen)
Una técnica novedosa de imágenes tridimensionales (3D) permite la representación de alta resolución del tejido pulmonar dañado después de una Covid-19 grave.

La nueva técnica, desarrollada en la Universidad de Göttingen (Alemania) y la Universidad Médica de Hannover (MHH; Alemania), basada en tomografía de rayos X con contraste de fase en múltiples escalas, permite realizar autopsias virtuales de histología e histopatología de la arquitectura parenquimatosa del tejido pulmonar no coloreado de pacientes que sucumbieron a Covid-19. Combinando geometría de haz cónico y paralelo, se pueden escanear las muestras de autopsia con una sección transversal máxima de 4 mm y reconstruir con una resolución y calidad de imagen que permite la segmentación de células individuales.

Al utilizar la capacidad de zoom de la geometría del haz cónico, las regiones de interés se reconstruyen con un tamaño mínimo de vóxel de 167 nm. En un estudio de prueba de concepto, los investigadores mostraron las capacidades del nuevo método al visualizar el daño alveolar difuso (DAD), incluida la formación prominente de la membrana hialina, mediante el mapeo de la distribución 3D y la densidad de los linfocitos que se infiltran en el tejido y proporcionando histogramas de distancias características desde el interior del tejido hasta el compartimento de aire más cercano. El estudio fue publicado el 20 de agosto de 2020 en la revista eLife.

“Con la tomografía con zoom, se pueden escanear grandes áreas de tejido pulmonar incrustadas en cera, lo que permite un examen detallado para localizar áreas particularmente interesantes alrededor de la inflamación, los vasos sanguíneos o los bronquios”, dijo el autor principal, el profesor Tim Salditt, PhD, del Instituto de Física de Rayos X de la Universidad de Göttingen. “Dado que los rayos X penetran profundamente en los tejidos, esto permite a los científicos comprender la relación entre la estructura microscópica del tejido y la arquitectura funcional más amplia de un órgano. Esto es importante, por ejemplo, para visualizar el árbol de los vasos sanguíneos hasta los capilares más pequeños”.

Las imágenes en 3D a través de tomografía computarizada (TC) no son suficientes para detectar la estructura del tejido con una resolución celular o subcelular. Por lo tanto, los investigadores utilizaron la tomografía de contraste de fase, que aprovecha las diferentes velocidades de propagación de los rayos X en el tejido para generar un patrón de intensidad. Luego se utilizaron ópticas y algoritmos de iluminación especiales para reconstruir imágenes nítidas a partir de estos patrones. Esto permitió el examen del tejido pulmonar a un tamaño y resolución escalables, lo que arrojó tanto vistas generales más grandes como reconstrucciones de cerca.

Enlace relacionado:
Universidad de Göttingen
Universidad Médica de Hannover


Print article
CIRS
Radcal

Canales

Radiografía

ver canal
Imagen: El ControlRad Select optimiza el haz de rayos X para reducir la radiación en un 85% (Fotografía cortesía de ControlRad)

Sistema de filtración optimiza el haz de rayos X en la fluoroscopía

Un sistema novedoso reduce la exposición innecesaria a la radiación durante los procedimientos guiados por fluoroscopia, al contener el haz de rayos X a la región de interés relevante (ROI).... Más

RM

ver canal
Imagen: El equipo de RM dedicado, para extremidades, O-scan Elite (Fotografía cortesía de Esaote)

Un escáner de resonancia magnética (RM) de tamaño mínimo ayuda a los departamentos de radiología a manejar las sobrecargas y los retrasos

El instrumento de resonancia magnética O-scan Elite de Esaote (Génova, Italia), facilita la imagenología de sección transversal, sagital, coronal y oblicua del brazo, incluyendo la mano, la muñeca, el... Más

Industria

ver canal
Imagen: AI-Rad Companion Chest CT genera automáticamente informes estandarizados, reproducibles y cuantitativos en formato DICOM SC (Fotografía cortesía de Siemens Healthineers).

Software para la TC de tórax basada en IA de Siemens Healthineers recibe aprobación de la FDA de los EUA

La Administración de Medicamentos y Alimentos de los Estados Unidos (FDA) aprobó tres módulos de AI-Rad Companion Chest CT, un asistente de software inteligente de Siemens Healthineers (Erlangen, Alemania)... Más
Copyright © 2000-2021 Globetech Media. All rights reserved.