Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Herramienta de IA predice riesgo de cáncer de pulmón a partir de TC de tórax de dosis baja

Por el equipo editorial de MedImaging en español
Actualizado el 17 Jan 2023
Print article
La herramienta de IA predice con precisión el riesgo de cáncer de pulmón para las personas (Fotografía cortesía del Mass General Cancer Center)
La herramienta de IA predice con precisión el riesgo de cáncer de pulmón para las personas (Fotografía cortesía del Mass General Cancer Center)

El cáncer de pulmón es la principal causa de muerte por cáncer en el mundo. Se recomienda la tomografía computarizada de dosis baja (TCBD) de tórax para evaluar a las personas en el grupo etario de 50 a 80 años que tienen un historial significativo de tabaquismo o que actualmente fuman. Los estudios han demostrado que la detección con TCBD puede reducir el riesgo de muerte por cáncer de pulmón hasta en un 24 %. Sin embargo, con el aumento de las tasas de cáncer de pulmón entre los no fumadores, existe la necesidad de nuevas estrategias para detectar y predecir con precisión el riesgo de cáncer de pulmón entre una población más amplia. Ahora, los investigadores han desarrollado y probado una herramienta de inteligencia artificial (IA) que predice con precisión el riesgo de cáncer de pulmón para las personas con o sin un historial significativo de tabaquismo en función del análisis de las exploraciones TCBD de los pacientes.

Con el fin de ayudar a mejorar la eficiencia de la detección del cáncer de pulmón y proporcionar evaluaciones individualizadas, investigadores del Mass General Cancer Center (Boston, MA, EUA), en colaboración con investigadores del Instituto Tecnológico de Massachusetts (MIT, Cambridge, MA, EUA) , han desarrollado Sybil, un modelo de aprendizaje profundo que analiza los escaneos y predice el riesgo de cáncer de pulmón para los próximos uno a seis años. En su estudio, el equipo validó Sybil utilizando tres conjuntos de datos independientes: un conjunto de escaneos de más de 6.000 participantes de NLST (estudio nacional de detección pulmonar de EUA) que Sybil no había visto antes; 8.821 TCBD de EUA; y 12.280 TCBD de Taiwán. El último conjunto de escaneos incluyó a personas con una variedad de antecedentes de tabaquismo, incluidos aquellos que nunca fumaron.

Los investigadores encontraron que Sybil podía predecir con precisión el riesgo de cáncer de pulmón en estos conjuntos. El equipo determinó la precisión de Sybil utilizando el área bajo la curva (AUC), que mide qué tan bien una prueba distingue entre muestras enfermas y normales y en la que 1.0 se considera una puntuación perfecta. Sybil pudo predecir el cáncer en un rango de un año con AUC de 0,92 para los participantes adicionales del NLST, 0,86 para el conjunto de datos del MGH y 0,94 para el conjunto de datos de Taiwán. Sybil predijo el cáncer de pulmón dentro de los seis años con AUC de 0,75, 0,81 y 0,80, respectivamente, para los tres conjuntos de datos. Los investigadores ahora comenzarán un ensayo clínico prospectivo para probar Sybil en el mundo real y ver cómo puede ayudar a los radiólogos.

"Sybil requiere solo una TCBD y no depende de los datos clínicos ni de las anotaciones del radiólogo", dijo el coautor Florian Fintelmann, MD, del Departamento de Radiología, División de Imagen e Intervención Torácica del Hospital General de Massachusetts. "Fue diseñado para ejecutarse en tiempo real en el fondo de una estación de lectura de radiología estándar que permite el soporte de decisiones clínicas en el punto de atención".

 

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Digital Radiography System
DuraDiagnost F30
New
Under Table Shield
3 Section Double Pivot Under Table Shield
New
Portable X-Ray Unit
AJEX240H

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: Un nuevo estudio probó una variedad de algoritmos de IA cara a cara en condiciones similares (Fotografía cortesía de 123RF)

IA supera a lectores humanos en detección de nódulos pulmonares en rayos X

Actualmente, más de 150 productos de software basados en inteligencia artificial (IA) están disponibles en el mercado europeo para radiología, y muchos de ellos abordan casos de uso similares.... Más

RM

ver canal
Imagen: La IA puede predecir si los pacientes con cáncer cerebral sobrevivirán más de 8 meses después de recibir tratamiento con radioterapia (Fotografía cortesía de KCL)

IA predice sobrevivientes de cáncer cerebral dentro de ocho meses de radioterapia mediante RM

El glioblastoma, un cáncer cerebral primario en adultos particularmente difícil de tratar, tiene una tasa de supervivencia baja: solo uno de cada cuatro pacientes vive más de un año... Más

Medicina Nuclear

ver canal
Imagen: Un agente de imágenes PET recientemente desarrollado es efectivo para identificar el cáncer medular de tiroides (Fotografía cortesía de 123RF)

Nuevo trazador PET mejora detección de lesiones en cáncer medular de tiroides

El cáncer medular de tiroides (CMT) representa aproximadamente el 3 % de todos los casos de cáncer de tiroides y es notablemente raro. Surge de células diferentes en comparación... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.