Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




IA supera al modelo de riesgo estándar para predecir cáncer de mama

Por el equipo editorial de MedImaging en español
Actualizado el 15 Jun 2023
Print article
Imagen: Los algoritmos de IA superaron al modelo de riesgo clínico estándar para predecir el riesgo de cáncer de mama a cinco años (Fotografía cortesía de Freepik)
Imagen: Los algoritmos de IA superaron al modelo de riesgo clínico estándar para predecir el riesgo de cáncer de mama a cinco años (Fotografía cortesía de Freepik)

El riesgo de cáncer de mama en las mujeres generalmente se evalúa utilizando modelos clínicos como el modelo de riesgo del Consorcio de Vigilancia del Cáncer de Mama (BCSC). Este modelo utiliza varios datos de pacientes, incluida la edad, antecedentes familiares de cáncer de mama, antecedentes de parto y densidad mamaria, para producir una puntuación de riesgo. Ahora, un gran estudio de miles de mamografías ha demostrado que los algoritmos de inteligencia artificial (IA) pueden superar este modelo de riesgo clínico estándar para predecir el riesgo de cáncer de mama a cinco años.

En el estudio retrospectivo, los investigadores de Kaiser Permanente Northern California (Oakland, CA, EUA) usaron datos de mamografías 2D de detección negativas (que no indicaban signos visibles de cáncer) realizadas en 2016. De las 324.009 mujeres elegibles examinadas ese año, se seleccionó aleatoriamente un subgrupo de 13.628 mujeres para examinarlas. Además, las 4.584 pacientes a las que se les diagnosticó cáncer dentro de los cinco años posteriores a su mamografía de 2016 también se incluyeron en el estudio. Todas las mujeres fueron monitoreadas hasta 2021. Los investigadores dividieron la duración del estudio de cinco años en tres marcos de tiempo separados: riesgo de cáncer de intervalo (diagnósticos entre 0 y 1 año), riesgo de cáncer futuro (diagnósticos entre 1 y 5 años) y todo riesgo de cáncer (diagnósticos entre 0 y 5 años).

Se emplearon cinco algoritmos de IA, incluidos dos utilizados por investigadores y tres disponibles comercialmente, para generar puntajes de riesgo de cáncer de mama durante el período de cinco años utilizando las mamografías de detección de 2016. Estos puntajes de riesgo luego se compararon entre sí y con el puntaje de riesgo clínico BCSC. El estudio reveló que los cinco algoritmos de IA superaron al modelo de riesgo BCSC en la predicción del riesgo de cáncer de mama de 0 a 5 años. Algunos algoritmos de IA se destacaron en la identificación de pacientes de alto riesgo de cáncer de intervalo, que a menudo puede ser agresivo y puede requerir una segunda lectura de mamografía, exámenes de detección adicionales o imágenes de seguimiento a intervalos cortos. Por ejemplo, al evaluar a las mujeres con el 10 % más alto de riesgo, la IA predijo hasta el 28 % de los cánceres en comparación con el 21 % que predijo el BCSC. Curiosamente, incluso los algoritmos de IA diseñados para horizontes de tiempo más cortos (tan bajos como 3 meses) podrían predecir hasta cinco años de riesgo futuro de cáncer cuando la mamografía no detectó clínicamente cáncer. Cuando se combinaron los modelos de riesgo de IA y BCSC mejoró aún más la predicción del cáncer.

"Los modelos de riesgo clínico dependen de la recopilación de información de diferentes fuentes, que no siempre está disponible o recopilada", dijo el investigador principal Vignesh A. Arasu, MD, Ph.D., científico investigador y radiólogo en ejercicio en Kaiser Permanente Northern California. "Los avances recientes en el aprendizaje profundo de la IA nos brindan la capacidad de extraer cientos a miles de características mamográficas adicionales".

"Este fuerte desempeño predictivo durante el período de cinco años sugiere que la IA está identificando tanto los cánceres pasados por alto como las características del tejido mamario que ayudan a predecir el desarrollo futuro del cáncer. Algo en las mamografías nos permite rastrear el riesgo de cáncer de mama. Esta es la 'caja negra' de la IA, añadió Arasu.

Enlaces relacionados:
Kaiser Permanente  

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
1.5T Superconducting MRI System
uMR 680
Ultrasound System
Aplio me
Drape Barrier
Double Pivot Swing Arm Drape

Print article
Radcal

Canales

RM

ver canal
Imagen: Las vías del cerebro destacadas son las más afectadas por una conmoción cerebral (foto cortesía de Benjamin Hacker, et al)

Modelo de IA diagnostica lesiones cerebrales traumáticas a partir de resonancias magnéticas con un 99 % de precisión

Una conmoción cerebral es un tipo de lesión cerebral traumática que puede provocar alteraciones temporales en la función cerebral. Ocurren debido a incidentes como lesiones... Más

Ultrasonido

ver canal
Imagen: Las nuevas aplicaciones habilitadas con IA, aprobadas por la FDA, se han integrado en los sistemas de ultrasonido EPIQ CVx y Affiniti CVx (foto cortesía de Royal Philips)

Plataforma de ultrasonido cardiovascular habilitada por IA de próxima generación acelera el análisis

La insuficiencia cardíaca es un importante desafío de salud mundial que afecta aproximadamente a 64 millones de personas en todo el mundo. Está asociada con altas tasas de mortalidad... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: Calantic Digital Solutions  es una suite coordinada de soluciones de radiología basadas en IA que tiene como objetivo transformar la radiología (Foto cortesía de Bayer)

Bayer y Rad AI colaboran para expandir el uso de soluciones operativas de radiología de vanguardia basadas en IA

Los datos de imagen constituyen aproximadamente el 90 % de todos los datos médicos, y el volumen de estos datos sigue aumentando, lo que incrementa significativamente la carga de trabajo para los... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.