Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Herramienta de inteligencia artificial diagnostica la atrofia muscular en pacientes con cáncer de cabeza y cuello a partir de TC

Por el equipo editorial de MedImaging en español
Actualizado el 22 Aug 2023
Print article
Imagen: La evaluación de masa muscular impulsada por la IA podría mejorar la atención para pacientes con cáncer de cabeza y cuello (Fotografía cortesía de Freepik)
Imagen: La evaluación de masa muscular impulsada por la IA podría mejorar la atención para pacientes con cáncer de cabeza y cuello (Fotografía cortesía de Freepik)

Los cánceres de cabeza y cuello presentan un desafío de tratamiento importante, que a menudo requiere una combinación de cirugía, radiación y quimioterapia. Si bien estos tratamientos pueden ser eficaces para curar la enfermedad, también son conocidos por sus graves efectos secundarios. Una preocupación clave es el desarrollo de sarcopenia o atrofia muscular. Esta afección puede provocar dificultades para comer y beber, lo que provoca desnutrición y una cantidad de problemas, incluida la posible necesidad de una sonda de alimentación, una reducción de la calidad de vida e incluso una muerte más temprana. La detección temprana de la sarcopenia es esencial, pero tradicionalmente ha sido un proceso laborioso. Los médicos suelen evaluar la masa muscular mediante tomografías computarizadas (TC), ya sea del abdomen o del cuello. Dado que las TC del cuello son comunes en pacientes con cáncer de cabeza y cuello, ofrecen una oportunidad para la identificación e intervención tempranas de la sarcopenia. Sin embargo, el diagnóstico de sarcopenia a partir de estos estudios requiere de un experto especializado que pueda diferenciar el músculo de otros tejidos, un proceso que puede tardar hasta 10 minutos por cada exploración.

Investigadores del Instituto Oncológico Dana-Farber (Boston, MA, EUA) han desarrollado una herramienta de inteligencia artificial (IA) que puede diagnosticar de manera rápida y precisa la sarcopenia mediante tomografías computarizadas del cuello en pacientes con cáncer de cabeza y cuello. La aplicación de IA agiliza lo que de otro modo sería un proceso minucioso y propenso a errores humanos, realizando la evaluación en solo 0,15 segundos. El proceso de desarrollo comenzó entrenando el modelo de IA utilizando historias clínicas y tomografías computarizadas de 420 pacientes. Un experto evaluó manualmente la masa muscular de cada paciente en función de las exploraciones y calculó una puntuación de índice músculoesquelético (SMI). Estos datos se utilizaron para entrenar el modelo de aprendizaje profundo y se utilizó un segundo conjunto de datos para validar el rendimiento del modelo. Sorprendentemente, el modelo realizó evaluaciones clínicamente aceptables el 96,2 % de las veces.

La herramienta podría tener amplias aplicaciones clínicas. Los métodos actuales a menudo se basan en el índice de masa corporal (IMC) como indicador del deterioro de la salud relacionado con el tratamiento. Sin embargo, cuando el equipo comparó la eficacia del IMC y el SMI para predecir resultados deficientes, descubrieron que el SMI era un predictor superior, lo que sugiere que podría convertirse en una herramienta clínica importante. La introducción de la evaluación basada en IA significa que la sarcopenia podría monitorearse con frecuencia durante todo el tratamiento de un paciente. La detección temprana podría impulsar intervenciones como apoyo nutricional, medicación o fisioterapia, lo que podría mejorar los resultados generales. También podría influir en las decisiones de tratamiento desde el principio, ya que comprender la masa muscular de un paciente podría orientar una estrategia de tratamiento personalizada, quizás más suave.

“La sarcopenia es un indicador de que el paciente no se encuentra bien. Una herramienta en tiempo real que nos indique cuándo un paciente está perdiendo masa muscular nos impulsaría a intervenir y hacer algo de apoyo para ayudar”, dijo el autor principal Benjamin Kann, MD, oncólogo radioterápico del Departamento de Oncología Radioterápica del Centro Oncológico Dana-Farber Brigham. 

Enlaces relacionados:
Instituto Oncológico Dana-Farber  

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Pre-Op Planning Solution
Sectra 3D Trauma
New
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80
New
X-Ray QA Meter
Piranha CT

Print article

Canales

Radiografía

ver canal
Imagen: La detección de cáncer de seno asistido por AI puede reducir las pruebas innecesarias (foto cortesía de Wustl)

Asistencia de IA mejora detección del cáncer de mama al reducir los falsos positivos

Radiólogos suelen detectar un caso de cáncer por cada 200 mamografías revisadas. Sin embargo, estas evaluaciones a menudo dan como resultado falsos positivos, lo que lleva a retiros... Más

RM

ver canal
Imagen: PET/MRI puede clasificar con precisión a los pacientes con cáncer de próstata (foto cortesía de 123RF)

PET/MRI mejora la precisión diagnóstica en pacientes con cáncer de próstata

El Sistema de datos e informes de imágenes de próstata (PI-RADS) es una escala de cinco puntos para evaluar el potencial de cáncer de próstata en imágenes de resonancia... Más

Ultrasonido

ver canal
Imagen: Diagrama esquemático del sistema de administración de fármacos de nanopartículas estimulados por ultrasonido para la terapia de biopelícula (foto cortesía de BIO Integration))

Nueva nanopartícula activada por ultrasonido elimina la biopelícula y la infección bacteriana

Las biopelículas, formadas por bacterias que se agregan en densas comunidades para protegerse contra las duras condiciones ambientales, contribuyen de manera importante a diversas enfermedades infecciosas.... Más

Medicina Nuclear

ver canal
Imagen: El sistema de IA utiliza imágenes de gammagrafía para el diagnóstico temprano de amiloidosis cardíaca (Fotografía cortesía de 123RF)

Sistema de IA detecta de forma automática y confiable amiloidosis cardíaca mediante imágenes de gammagrafía

La amiloidosis cardíaca, una afección caracterizada por la acumulación de depósitos anormales de proteínas (amiloide) en el músculo cardíaco, afecta gravemente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.