Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Biopsia virtual impulsada por IA ayuda a evaluar cáncer de pulmón a partir de exploraciones médicas

Por el equipo editorial de MedImaging en español
Actualizado el 27 Mar 2024
Print article
Imagen: La IA extrae información sobre la composición química de los tumores pulmonares a partir de escaneos médicos (Fotografía cortesía del Colegio Imperial de Londres)
Imagen: La IA extrae información sobre la composición química de los tumores pulmonares a partir de escaneos médicos (Fotografía cortesía del Colegio Imperial de Londres)

El cáncer de pulmón, la principal causa de muertes relacionadas con el cáncer, presenta un desafío en gran medida debido a la ausencia de síntomas en sus primeras etapas. Esto subraya la necesidad urgente de nuevos métodos para detectar y tratar la enfermedad antes de que haga metástasis. Por lo general, los pacientes que presentan síntomas de cáncer de pulmón se someten a procedimientos de diagnóstico como radiografías de tórax y tomografías computarizadas (TC), que también pueden revelar si el cáncer se ha extendido. Cuando es posible, se toma una biopsia para que los científicos clínicos la examinen bajo un microscopio, identificando el tipo de cáncer de pulmón, lo cual es crucial para determinar el plan de tratamiento más eficaz. Además, una prueba más reciente, conocida como perfil metabolómico, requiere una biopsia de tejido y ofrece información más profunda de la composición química y metabólica de las células tumorales, proporcionando información vital sobre cómo puede progresar el cáncer. Sin embargo, esta prueba no se utiliza comúnmente en los hospitales debido a su naturaleza laboriosa y que requiere mucho tiempo.

Últimamente, la inteligencia artificial (IA), en particular la IA generativa que puede crear nuevo contenido a partir de datos aprendidos, se utiliza cada vez más en el campo de las imágenes médicas para detectar enfermedades que los médicos humanos podrían pasar por alto o que son imperceptibles a simple vista. Ahora, investigadores del Colegio Imperial de Londres (Londres, Reino Unido) han desarrollado un sistema que integra las TC con el perfil químico tanto de los tumores como del tejido pulmonar normal. Esta innovación no sólo clasifica el tipo de cáncer de pulmón sino que también proporciona predicciones precisas sobre los resultados de los pacientes. Por primera vez, el uso de imágenes médicas combinadas con IA ofrece lo que podría considerarse una "biopsia virtual" para pacientes con cáncer. Esta técnica no invasiva es clave para identificar los tipos de cáncer de pulmón y predecir la progresión del cáncer, especialmente cuando una biopsia física de tejido es inviable o inapropiada.

Para la investigación, el equipo se propuso determinar si la información química de los tumores de pulmón, tal como se indica en su perfil metabolómico podría detectarse en las TC. La construcción de un modelo de IA requirió entrenamiento con datos de pacientes que se sometieron a exploraciones médicas, recibieron diagnósticos definitivos y para quienes hay información clínica adicional disponible. Utilizando datos de 48 pacientes tratados por cáncer de pulmón, cada uno de los cuales se sometió a una TC y a un perfil metabolómico detallado de su tumor y el tejido sano adyacente, el equipo creó una herramienta de aprendizaje profundo impulsada por IA llamada TC-radiómica-metabolómica de tejido (TMR-CT). Descubrieron un vínculo fuerte y significativo entre los perfiles metabolómicos de los pacientes y las "características profundas" en sus tomografías computarizadas, que se manifiestan como variaciones en el brillo u oscuridad de las imágenes.

Los investigadores plantearon la hipótesis de que este método podría eliminar la necesidad de muestras físicas de tejido, permitiendo inferir las características metabólicas del tumor directamente a partir de TC. Para validar esto, aplicaron el modelo TMR-CT a un grupo separado de 723 pacientes con cáncer de pulmón que se habían sometido a TC pero carecían de datos metabolómicos. Los hallazgos fueron notables: TMR-CT categorizó de manera competente los tipos de cáncer de pulmón y proporcionó predicciones confiables sobre los resultados de los pacientes, superando las metodologías y evaluaciones clínicas tradicionales basadas en TC. El equipo tiene la esperanza de confirmar la eficacia de TMR-CT en otros grupos de pacientes, incluidos aquellos con cánceres de cerebro, ovario y endometrio, donde la obtención de biopsias suele ser un desafío. En el futuro, esta técnica podría integrarse en escáneres de imágenes médicas comerciales como un algoritmo, revolucionando así el diagnóstico del cáncer.

"Esta investigación muestra el potencial del uso de TC para obtener una comprensión más profunda y matizada de la composición química del tejido y del tumor, a la que hasta ahora sólo se podía acceder a través del muestreo directo de tejido", dijo el profesor Eric Aboagye, del Departamento de Cirugía y Cáncer del Imperial. "Este método podría resultar particularmente beneficioso en países como el Reino Unido, donde la prevalencia del cáncer de pulmón es alta, y potencialmente transformar los protocolos de diagnóstico y tratamiento".

Enlaces relacionados:
Colegio Imperial de Londres

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Illuminator
Trimline Basic
New
Ceiling-Mounted Digital Radiography System
Radiography 5000 C
New
Pre-Op Planning Solution
Sectra 3D Trauma

Print article

Canales

Radiografía

ver canal
Imagen: La detección de cáncer de seno asistido por AI puede reducir las pruebas innecesarias (foto cortesía de Wustl)

Asistencia de IA mejora detección del cáncer de mama al reducir los falsos positivos

Radiólogos suelen detectar un caso de cáncer por cada 200 mamografías revisadas. Sin embargo, estas evaluaciones a menudo dan como resultado falsos positivos, lo que lleva a retiros... Más

RM

ver canal
Imagen: PET/MRI puede clasificar con precisión a los pacientes con cáncer de próstata (foto cortesía de 123RF)

PET/MRI mejora la precisión diagnóstica en pacientes con cáncer de próstata

El Sistema de datos e informes de imágenes de próstata (PI-RADS) es una escala de cinco puntos para evaluar el potencial de cáncer de próstata en imágenes de resonancia... Más

Ultrasonido

ver canal
Imagen: Diagrama esquemático del sistema de administración de fármacos de nanopartículas estimulados por ultrasonido para la terapia de biopelícula (foto cortesía de BIO Integration))

Nueva nanopartícula activada por ultrasonido elimina la biopelícula y la infección bacteriana

Las biopelículas, formadas por bacterias que se agregan en densas comunidades para protegerse contra las duras condiciones ambientales, contribuyen de manera importante a diversas enfermedades infecciosas.... Más

Medicina Nuclear

ver canal
Imagen: El sistema de IA utiliza imágenes de gammagrafía para el diagnóstico temprano de amiloidosis cardíaca (Fotografía cortesía de 123RF)

Sistema de IA detecta de forma automática y confiable amiloidosis cardíaca mediante imágenes de gammagrafía

La amiloidosis cardíaca, una afección caracterizada por la acumulación de depósitos anormales de proteínas (amiloide) en el músculo cardíaco, afecta gravemente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.