Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA dibuja mapas para identificar con precisión tumores y enfermedades en imágenes médicas

Por el equipo editorial de MedImaging en español
Actualizado el 09 Apr 2024
Print article
Imagen: El nuevo modelo de IA dibuja mapas de tesoros para diagnosticar enfermedades (Fotografía cortesía de 123RF)
Imagen: El nuevo modelo de IA dibuja mapas de tesoros para diagnosticar enfermedades (Fotografía cortesía de 123RF)

La interpretación de las imágenes médicas varía según las diferentes regiones del mundo, particularmente en los países en desarrollo donde la escasez de médicos y las largas colas de pacientes son comunes. La inteligencia artificial (IA) se ha convertido en una ayuda valiosa en estos entornos. La detección automatizada de imágenes médicas que utiliza IA puede actuar como una herramienta de apoyo para los médicos, escaneando previamente imágenes y resaltando hallazgos inusuales, como tumores o indicadores tempranos de enfermedades (biomarcadores), para una revisión médica adicional. Este enfoque no sólo ahorra tiempo sino que también puede mejorar la precisión de los diagnósticos. Sin embargo, los modelos tradicionales de IA carecen de la capacidad de explicar sus hallazgos, indicando simplemente la presencia o ausencia de tumores sin mayor elaboración.

Ahora, investigadores del Instituto Beckman de Ciencia y Tecnología Avanzada (Urbana, Illinois, EUA) han desarrollado un modelo de IA innovador que no sólo detecta anomalías sino que también explica cada decisión que toma. Este modelo, a diferencia de las herramientas de IA estándar, proporciona retroalimentación interpretativa en lugar de simplemente identificar tumores. Convencionalmente, los modelos de IA que ayudan a los médicos se entrenan con numerosas imágenes médicas, algunas que muestran anomalías y otras normales. Estos modelos, al encontrar una nueva imagen, asignan una puntuación de probabilidad que indica la probabilidad de que haya un tumor presente.

Este novedoso modelo de IA va un paso más allá al ofrecer una explicación visual de su proceso de toma de decisiones a través de lo que se conoce como "mapa de equivalencia" (E-map). Este E-map transforma la imagen médica original, como una radiografía o una mamografía, asignando valores a diferentes regiones según su importancia médica para predecir anomalías. El modelo agrega estos valores para derivar una puntuación de diagnóstico final. Este enfoque transparente permite a los médicos ver qué áreas del mapa contribuyeron de manera más significativa al diagnóstico e investigar estas regiones más de cerca, mejorando la comprensión y respondiendo las consultas de los pacientes sobre el proceso de diagnóstico.

El equipo de investigación entrenó este modelo en más de 20.000 imágenes en tres tareas de diagnóstico de enfermedades diferentes. Se le enseñó al modelo a identificar signos tempranos de tumores en mamografías simuladas, a detectar la acumulación de drusas en imágenes retinianas indicativas de degeneración macular y a reconocer la cardiomegalia en radiografías de tórax. En comparación con los sistemas de IA tradicionales sin capacidades de autoexplicación, este nuevo modelo demostró una precisión comparable: 77,8 % en mamografías, 99,1 % en imágenes OCT de retina y 83 % en radiografías de tórax, igualando la precisión de los modelos existentes. El éxito de este modelo, que emplea una red neuronal profunda que imita la complejidad de las neuronas humanas, se atribuye a su diseño inspirado en redes neuronales lineales más simples e interpretables. Los investigadores pretenden ampliar la aplicación de este modelo a varias partes del cuerpo, con la capacidad de distinguir potencialmente entre diferentes anomalías en desarrollos futuros.

"La idea es ayudar a detectar el cáncer y las enfermedades en sus primeras etapas, como una X en un mapa, y comprender cómo se tomó la decisión. Nuestro modelo ayudará a agilizar ese proceso y hacerlo más fácil tanto para los médicos como para los pacientes", dijo Sourya Sengupta, autor principal del estudio y asistente de investigación graduado en el Instituto Beckman.

"Estoy entusiasmado con el beneficio directo de nuestra herramienta para la sociedad, no sólo en términos de mejorar el diagnóstico de enfermedades, sino también en la mejora de la confianza y la transparencia entre médicos y pacientes", añadió el investigador principal Mark Anastasio, investigador del Instituto Beckman y profesor y profesor Donald Biggar Willet y Jefe del Departamento de Bioingeniería de Illinois.

Enlaces relacionados:
Instituto Beckman

Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Color LCD
U156W
New
Ultrasound Table
Ergonomic Advantage (EA) Line
Miembro Plata
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Print article

Canales

Radiografía

ver canal
Imagen: La detección de cáncer de seno asistido por AI puede reducir las pruebas innecesarias (foto cortesía de Wustl)

Asistencia de IA mejora detección del cáncer de mama al reducir los falsos positivos

Radiólogos suelen detectar un caso de cáncer por cada 200 mamografías revisadas. Sin embargo, estas evaluaciones a menudo dan como resultado falsos positivos, lo que lleva a retiros... Más

RM

ver canal
Imagen: PET/MRI puede clasificar con precisión a los pacientes con cáncer de próstata (foto cortesía de 123RF)

PET/MRI mejora la precisión diagnóstica en pacientes con cáncer de próstata

El Sistema de datos e informes de imágenes de próstata (PI-RADS) es una escala de cinco puntos para evaluar el potencial de cáncer de próstata en imágenes de resonancia... Más

Ultrasonido

ver canal
Imagen: Diagrama esquemático del sistema de administración de fármacos de nanopartículas estimulados por ultrasonido para la terapia de biopelícula (foto cortesía de BIO Integration))

Nueva nanopartícula activada por ultrasonido elimina la biopelícula y la infección bacteriana

Las biopelículas, formadas por bacterias que se agregan en densas comunidades para protegerse contra las duras condiciones ambientales, contribuyen de manera importante a diversas enfermedades infecciosas.... Más

Medicina Nuclear

ver canal
Imagen: El sistema de IA utiliza imágenes de gammagrafía para el diagnóstico temprano de amiloidosis cardíaca (Fotografía cortesía de 123RF)

Sistema de IA detecta de forma automática y confiable amiloidosis cardíaca mediante imágenes de gammagrafía

La amiloidosis cardíaca, una afección caracterizada por la acumulación de depósitos anormales de proteínas (amiloide) en el músculo cardíaco, afecta gravemente... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.