Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo de IA combina pruebas de sangre y análisis de TC para predecir respuesta a terapia en pacientes con cáncer de ovario

Por el equipo editorial de MedImaging en español
Actualizado el 08 Dec 2023
Print article
Imagen: La inteligencia artificial predice las respuestas a la terapia para el cáncer de ovario (Fotografía cortesía de 123RF)
Imagen: La inteligencia artificial predice las respuestas a la terapia para el cáncer de ovario (Fotografía cortesía de 123RF)

El cáncer de ovario afecta anualmente a miles de mujeres y muchos diagnósticos se producen en etapas avanzadas debido a síntomas tempranos sutiles. El carcinoma de ovario seroso de alto grado, que representa entre el 70 % y el 80 % de los casos de cáncer de ovario, es particularmente agresivo y a menudo resistente a la quimioterapia. Los métodos actuales para predecir la respuesta a la terapia en estos tumores tienen una precisión de sólo alrededor del 50 %. La complejidad y diversidad de la enfermedad entre las personas ha dificultado encontrar biomarcadores fiables. Ahora, los investigadores han desarrollado una herramienta basada en inteligencia artificial (IA) para mejorar la precisión de la predicción de las respuestas a la quimioterapia en pacientes con cáncer de ovario.

La herramienta, llamada IRON (siglas en inglés para Radiogenómica Integrada para la Terapia Neoadyuvante Ovárica), fue desarrollada por investigadores de la Universidad Católica del Sagrado Corazón (Milán, Italia). IRON analiza una variedad de características clínicas, incluido el ADN tumoral circulante a partir de muestras de sangre (biopsia líquida), datos demográficos del paciente (edad, estado de salud, etc.), marcadores tumorales e imágenes de tomografía computarizada. Luego predice la probabilidad de un resultado terapéutico exitoso, específicamente la reducción volumétrica de las lesiones tumorales. Sorprendentemente, IRON puede predecir los resultados de la terapia con una tasa de precisión del 80 %, una mejora significativa con respecto a los métodos clínicos existentes.

Para su investigación, el equipo recopiló dos conjuntos de datos que comprenden 134 pacientes en total, 92 en el primer conjunto de datos y 42 en un conjunto de validación separado. Recopilaron datos clínicos completos de estos pacientes, incluida información demográfica, especificaciones del tratamiento, biomarcadores sanguíneos como CA-125 y ADN tumoral circulante. Además, recopilaron detalles cuantitativos de tomografías computarizadas de todos los sitios de tumores primarios y metastásicos. En particular, se observó que los sitios omental y pélvico/ovárico, donde comúnmente se propaga el cáncer de ovario, soportan inicialmente la mayor parte de la carga de enfermedad. Se encontró que los depósitos omentales respondieron mejor a la terapia neoadyuvante en comparación con la enfermedad pélvica.

Los investigadores también examinaron mutaciones tumorales (como TP53 MAF en el ADN circulante) y el marcador CA-125 en relación con la carga general de enfermedad antes del tratamiento y la respuesta a la terapia. El análisis avanzado de imágenes de tomografía computarizada identificó seis subgrupos de pacientes, cada uno con características biológicas y clínicas únicas que indican su respuesta a la terapia. Estas características del tumor se incorporaron a algoritmos de IA, creando un modelo integral. Después de ser entrenado, la efectividad del modelo se validó utilizando una muestra de pacientes independiente, lo que demuestra su potencial para mejorar las estrategias de tratamiento del cáncer de ovario.

"Desde una perspectiva clínica, el marco propuesto aborda la necesidad insatisfecha de identificar tempranamente a los pacientes que probablemente no respondan a la terapia neoadyuvante y puedan ser dirigidos a una intervención quirúrgica inmediata", afirmó la profesora Evis Sala, quien coordinó el estudio.

Enlaces relacionados:
Universidad Católica del Sagrado Corazón  

New
Miembro Oro
X-Ray QA Meter
T3 AD Pro
Fetal Monitor
Avante Compact II
Digital Radiography System
meX+20BT
Ultrasound System
ARIETTA 750SE

Print article

Canales

Radiografía

ver canal
Imagen: Cuatro ejemplos de radiografías de tórax notables con hallazgos críticos pasados por alto (Foto cortesía de Radiología; https://doi.org/10.1148/radiol.240272)

El análisis de radiografías de tórax impulsado por IA muestra resultados prometedores en la práctica clínica

Los avances recientes en inteligencia artificial (IA) han impulsado el interés en el diagnóstico asistido por computadora, motivado por la creciente carga de trabajo en radiología,... Más

RM

ver canal
Imagen:  Un brazalete portátil similar a una joya reduce el ruido de fondo para aumentar drásticamente la potencia de la resonancia magnética (foto cortesía de la Universidad de Boston)

Los metamateriales podrían aumentar la velocidad y precisión de las resonancias magnéticas

La resonancia magnética (RM) ha revolucionado la forma en que los médicos diagnostican y planifican el tratamiento de diversas enfermedades, al permitir la visualización no invasiva... Más

Ultrasonido

ver canal
Imagen: El dispositivo Diadem está diseñado para tratar dolor crónico y la depresión (foto cortesía de la Universidad de Utah)

Dispositivo de ultrasonido estimula no invasivamente regiones profundas del cerebro para tratar el dolor crónico

El dolor sirve como una advertencia biológica vital, pero en muchas enfermedades se distorsiona. Las personas que sufren dolor crónico a menudo enfrentan señales de dolor persistentes... Más

Medicina Nuclear

ver canal
Imagen: PET/ULD CT con LAFOV [18F]MFBG (arriba) y [123I] MIBG gammagrafía con [123I]MIBG con imágenes SPECT/LDCT (abajo) de una niña de 7 semanas con neuroblastoma (foto cortesía del Journal of Nuclear Medicine)

Nueva técnica PET/CT detecta con precisión el neuroblastoma en niños con tiempo de escaneo corto y sin anestesia

El neuroblastoma, el tumor sólido extracraneal más común en niños, tiene una tasa de supervivencia general del 70 %. Tradicionalmente, el procedimiento de escaneo SPECT/CT con... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más

Industria

ver canal
Imagen: SONASes un dispositivo de ultrasonido portátil alimentado por batería para la evaluación no invasiva de la perfusión cerebral (foto cortesía de BURL Concepts)

Una colaboración innovadora mejorará la detección del accidente cerebrovascular isquémico

La evaluación del ictus isquémico se ha visto obstaculizada durante mucho tiempo por las limitaciones de las técnicas de diagnóstico por imagen tradicionales, como la tomografía... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.