Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Modelo para identificar las lesiones mamarias

Por el equipo editorial de MedImaging en español
Actualizado el 01 Nov 2017
Print article
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Los investigadores han entrenado una herramienta de aprendizaje automático para identificar lesiones de cáncer de mama de alto riesgo diagnosticadas con biopsia que tienen poca probabilidad de volverse cancerosas y, por lo tanto, no requieren una cirugía inmediata.
 
El modelo mostró una exactitud del 97% en sus predicciones y podría ayudar a reducir las cirugías de cáncer de mama innecesarias en un 33%. Las lesiones de alto riesgo tienen un mayor riesgo de convertirse en cáncer, pero muchas de estas lesiones se pueden seguir, de manera segura, usando imágenes, sin requerir cirugía.
 
El estudio fue publicado en línea en la edición de octubre de 2017 de la revista Radiology por investigadores del Instituto Tecnológico de Massachusetts (MIT, Boston, MA, EUA) y del Hospital General de Massachusetts (MGH; Boston, MA, EUA). La herramienta de aprendizaje automático permitió a los investigadores encontrar aquellas lesiones de alto riesgo que tienen un riesgo bajo de subir a cáncer.
 
El modelo tuvo en cuenta la edad de la paciente, la histología de la lesión y otros factores de riesgo estándar, pero también incluyó las palabras clave de los informes de patología de la biopsia. Los investigadores entrenaron el modelo utilizando pacientes con lesiones de alto riesgo comprobadas por biopsia. Después de entrenar el modelo en dos tercios de las lesiones de alto riesgo, los investigadores descubrieron que pudieron identificar el 97% de las lesiones que se volvieron cáncer. Los investigadores también encontraron que al usar el modelo podían ayudar a evitar casi un tercio de las cirugías de tumores benignos.
 
El autor del estudio, el radiólogo Manisha Bahl, MD, MPH, del MGH y de la Facultad de Medicina de Harvard, dijo: “Existen diferentes tipos de lesiones de alto riesgo. La mayoría de las instituciones recomiendan la escisión quirúrgica para lesiones de alto riesgo como la hiperplasia ductal atípica. para los que el riesgo de subir a cáncer es de aproximadamente el 20%. Para otros tipos de lesiones de alto riesgo, el riesgo de volverse cáncer varía bastante en la literatura y el manejo de la paciente, incluida la decisión sobre si extirpar o examinar la lesión, varía según las prácticas. Nuestro objetivo es aplicar la herramienta en la clínica”.
 
Proveedor de oro
Conductive Gel
Tensive
New
Proveedor de oro
IMRT Thorax Phantom
CIRS Model 002LFC
New
Diagnostic Ultrasound System
DRE Crystal 4P
New
CT System
Aquilion Lightning 80

Print article
Sun Nuclear -    Mirion
Radcal

Canales

RM

ver canal
Imagen: El software de volumetría cerebral AIRAscore ha recibido la autorización 510 (k) de la FDA (Fotografía cortesía de AIRAmed)

Software de evaluación de resonancia magnética cerebral impulsado por IA permite detección temprana de Alzheimer y demencia

Tradicionalmente, la identificación de la enfermedad de Alzheimer y otras formas de demencia ha dependido principalmente de imágenes por resonancia magnética. Sin embargo, los estudios... Más

Ultrasonido

ver canal
Imagen: La aplicación de ultrasonido mejorado por contraste de súper resolución está disponible en el sistema de ultrasonido EPIQ Elite (Fotografía cortesía de Philips)

Nueva aplicación de ultrasonido con contraste mejorado optimiza la confianza diagnóstica de pacientes con cáncer

Para diagnosticar y tratar el cáncer, es fundamental para los proveedores de atención médica comprender la dinámica del flujo sanguíneo que entra y sale de una lesión... Más

Medicina Nuclear

ver canal
Imagen: Un modelo de IA puede evaluar los tumores cerebrales en PET (Fotografía cortesía de Freepik)

Modelo de IA para imágenes PET determina respuesta del paciente a tratamientos de tumores cerebrales

La evaluación de los cambios en el volumen metabólico tumoral (VMT) mediante exploraciones PET utilizando radiotrazadores específicos como la fluoroetil tirosina (FET) F-18 juega un... Más

Imaginología General

ver canal
Imagen: El software de IA mejora los tiempos de tratamiento de trombectomía endovascular para pacientes con accidente cerebrovascular (Fotografía cortesía de 123RF)

IA detecta OGV a partir de angiografías por TC para mejorar tiempos de tratamiento de la trombectomía endovascular en pacientes con accidente cerebrovascular

La oclusión de grandes vasos (OGV) ocurre cuando se bloquea una arteria clave en el cerebro y se considera una forma particularmente grave de accidente cerebrovascular. Se estima que las OGV representan... Más

Industria

ver canal
Imagen: El arco en C móvil Zenition 70 con detector plano (Fotografía cortesía de Philips)

Mercado mundial de arcos en C fijos y móviles impulsado por aumento de procedimientos quirúrgicos

La evolución de la tecnología del arco en C ha sido realmente notable, marcando el comienzo de la era de los arcos en C móviles y mini. Estos avances han brindado a los cirujanos el... Más
Copyright © 2000-2023 Globetech Media. All rights reserved.