Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Parker Laboratories

Deascargar La Aplicación Móvil




Eventos

ATENCIÓN: Debido a la EPIDEMIA DE CORONAVIRUS, ciertos eventos están siendo reprogramados para una fecha posterior o cancelados por completo. Verifique con el organizador del evento o el sitio web antes de planificar cualquier evento próximo.

Modelo para identificar las lesiones mamarias

Por el equipo editorial de MedImaging en español
Actualizado el 01 Nov 2017
Print article
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Los investigadores han entrenado una herramienta de aprendizaje automático para identificar lesiones de cáncer de mama de alto riesgo diagnosticadas con biopsia que tienen poca probabilidad de volverse cancerosas y, por lo tanto, no requieren una cirugía inmediata.
 
El modelo mostró una exactitud del 97% en sus predicciones y podría ayudar a reducir las cirugías de cáncer de mama innecesarias en un 33%. Las lesiones de alto riesgo tienen un mayor riesgo de convertirse en cáncer, pero muchas de estas lesiones se pueden seguir, de manera segura, usando imágenes, sin requerir cirugía.
 
El estudio fue publicado en línea en la edición de octubre de 2017 de la revista Radiology por investigadores del Instituto Tecnológico de Massachusetts (MIT, Boston, MA, EUA) y del Hospital General de Massachusetts (MGH; Boston, MA, EUA). La herramienta de aprendizaje automático permitió a los investigadores encontrar aquellas lesiones de alto riesgo que tienen un riesgo bajo de subir a cáncer.
 
El modelo tuvo en cuenta la edad de la paciente, la histología de la lesión y otros factores de riesgo estándar, pero también incluyó las palabras clave de los informes de patología de la biopsia. Los investigadores entrenaron el modelo utilizando pacientes con lesiones de alto riesgo comprobadas por biopsia. Después de entrenar el modelo en dos tercios de las lesiones de alto riesgo, los investigadores descubrieron que pudieron identificar el 97% de las lesiones que se volvieron cáncer. Los investigadores también encontraron que al usar el modelo podían ayudar a evitar casi un tercio de las cirugías de tumores benignos.
 
El autor del estudio, el radiólogo Manisha Bahl, MD, MPH, del MGH y de la Facultad de Medicina de Harvard, dijo: “Existen diferentes tipos de lesiones de alto riesgo. La mayoría de las instituciones recomiendan la escisión quirúrgica para lesiones de alto riesgo como la hiperplasia ductal atípica. para los que el riesgo de subir a cáncer es de aproximadamente el 20%. Para otros tipos de lesiones de alto riesgo, el riesgo de volverse cáncer varía bastante en la literatura y el manejo de la paciente, incluida la decisión sobre si extirpar o examinar la lesión, varía según las prácticas. Nuestro objetivo es aplicar la herramienta en la clínica”.
 

Print article
Radcal
Sun Nuclear

Canales

Radiografía

ver canal
Imagen: El primer sistema de rayos X para cardiología habilitado para IA aprobado por la FDA (Fotografía cortesía de Omega Medical)

Primer sistema de rayos X habilitado para IA aprobado por la FDA para cardiología reduce la dosis hasta en un 84 %

El primer sistema de rayos X habilitado para IA, aprobado por la FDA, que está diseñado específicamente para laboratorios de cardiología, representa el próximo salto... Más

RM

ver canal
Imagen: Locus coeruleus como se ve en un escáner  de resonancia magnética 7T (Fotografía cortesía de la Universidad de Cambridge)

Escáneres de resonancia magnética 7T ultrapotentes podrían ayudar a curar síntomas previamente intratables en enfermedad de Parkinson

Tanto la enfermedad de Parkinson como un trastorno relacionado, la parálisis supranuclear progresiva (PSP), son enfermedades cerebrales progresivas que no solo afectan el movimiento sino que también... Más

Ultrasonido

ver canal
Imagen: QUSTom es el primer proyecto que utilizará la supercomputación para detectar tumores (Fotografía cortesía de Pexels)

Modalidad de imagen que combina ultrasonido y supercomputación podría revolucionar la detección del cáncer de mama

El cáncer de mama es el tipo de tumor diagnosticado con más frecuencia en el mundo, con 2,3 millones de mujeres diagnosticadas en 2020 y 700.000 muertes por esta enfermedad ese mismo año.... Más

Imaginología General

ver canal
Imagen: TC de la articulación del dedo (Fotografía cortesía de FAU)

Inteligencia artificial permite la detección temprana de artritis mediante escaneos HR-pQCT

Hay muchos tipos diferentes de artritis, y no siempre es fácil diagnosticar el tipo exacto de enfermedad inflamatoria que afecta las articulaciones de un paciente. La falta de biomarcadores actualmente,... Más

Industria

ver canal
Imagen: El mercado global de imágenes de diagnóstico es impulsado por los avances tecnológicos (Fotografía cortesía de Pexels)

Mercado global de imágenes de diagnóstico superará los 33 mil millones de dólares para 2026

El mercado global de imágenes de diagnóstico es uno de los segmentos más críticos del sector de la salud. Las imágenes médicas ayudan en la detección temprana... Más
Copyright © 2000-2022 Globetech Media. All rights reserved.