Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Eventos

14 mar 2019 - 17 mar 2019

Modelo para identificar las lesiones mamarias

Por el equipo editorial de Medimaging en español
Actualizado el 01 Nov 2017
Print article
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Imagen: El diagrama de dispersión muestra la puntuación del modelo de aprendizaje automático en comparación con un número aleatorio en el conjunto de prueba independiente (Fotografía cortesía de la RSNA).
Los investigadores han entrenado una herramienta de aprendizaje automático para identificar lesiones de cáncer de mama de alto riesgo diagnosticadas con biopsia que tienen poca probabilidad de volverse cancerosas y, por lo tanto, no requieren una cirugía inmediata.
 
El modelo mostró una exactitud del 97% en sus predicciones y podría ayudar a reducir las cirugías de cáncer de mama innecesarias en un 33%. Las lesiones de alto riesgo tienen un mayor riesgo de convertirse en cáncer, pero muchas de estas lesiones se pueden seguir, de manera segura, usando imágenes, sin requerir cirugía.
 
El estudio fue publicado en línea en la edición de octubre de 2017 de la revista Radiology por investigadores del Instituto Tecnológico de Massachusetts (MIT, Boston, MA, EUA) y del Hospital General de Massachusetts (MGH; Boston, MA, EUA). La herramienta de aprendizaje automático permitió a los investigadores encontrar aquellas lesiones de alto riesgo que tienen un riesgo bajo de subir a cáncer.
 
El modelo tuvo en cuenta la edad de la paciente, la histología de la lesión y otros factores de riesgo estándar, pero también incluyó las palabras clave de los informes de patología de la biopsia. Los investigadores entrenaron el modelo utilizando pacientes con lesiones de alto riesgo comprobadas por biopsia. Después de entrenar el modelo en dos tercios de las lesiones de alto riesgo, los investigadores descubrieron que pudieron identificar el 97% de las lesiones que se volvieron cáncer. Los investigadores también encontraron que al usar el modelo podían ayudar a evitar casi un tercio de las cirugías de tumores benignos.
 
El autor del estudio, el radiólogo Manisha Bahl, MD, MPH, del MGH y de la Facultad de Medicina de Harvard, dijo: “Existen diferentes tipos de lesiones de alto riesgo. La mayoría de las instituciones recomiendan la escisión quirúrgica para lesiones de alto riesgo como la hiperplasia ductal atípica. para los que el riesgo de subir a cáncer es de aproximadamente el 20%. Para otros tipos de lesiones de alto riesgo, el riesgo de volverse cáncer varía bastante en la literatura y el manejo de la paciente, incluida la decisión sobre si extirpar o examinar la lesión, varía según las prácticas. Nuestro objetivo es aplicar la herramienta en la clínica”.
 

Print article
Italray
Radcal

Canales

Radiografía

ver canal
Imagen: Las pruebas de aisladores cristalinos pueden medir los niveles de radiación de fondo (Fotografía cortesía de la Universidad Estatal de Carolina del Norte).

Unas pruebas cristalinas evalúan rápidamente la exposición a la radiación

Un estudio nuevo afirma que el análisis de los aisladores cristalinos que se encuentran en la mayoría de los dispositivos electrónicos modernos, podría facilitar la dosimetría de respuesta de emergencia... Más

Ultrasonido

ver canal
Imagen: El aprendizaje profundo y la inteligencia artificial (AI) transforman los exámenes de ultrasonido obstétrico en una experiencia más fácil, más rápida, más consistente y mucho más exacta (Fotografía cortesía de SonoScape).

Una tecnología con IA automatiza el flujo de trabajo del ultrasonido obstétrico

El algoritmo S-fetus de SonoScape Medical (Shenzhen, China), diseñado para el sistema de ultrasonido S60, ha sido diseñado para simplificar un procedimiento de ultrasonido obstétrico estándar reduciéndolo... Más

Medicina Nuclear

ver canal
Imagen: La plataforma de radiocirugía giroscópica ZAP-X (Fotografía cortesía de ZAP Surgical Systems).

Una plataforma de radiocirugía giroscópica hace la ablación de tumores de cerebro

Una plataforma nueva de radioterapia (RT) administra radiocirugía estereotáctica de dosis altas (SRS) para extirpar de forma no invasiva los tumores cerebrales y otras afecciones intracraneales seleccionadas.... Más

Imaginología General

ver canal
Imagen: El nuevo sistema de resonancia magnética, Magnetom Lumina 3T (Fotografía cortesía de Siemens Healthineers).

Un escáner de resonancia magnética de gran apertura mejora la satisfacción de los pacientes.

Un dispositivo innovador de imágenes de resonancia magnética (RM) utiliza una tecnología centrada en el paciente para simplificar y acortar los flujos de trabajo y aumentar la productividad, la reproducibilidad... Más

Industria

ver canal
Imagen: El crecimiento del mercado mundial de imágenes mamarias es impulsado principalmente por los avances tecnológicos y la creciente incidencia del cáncer de mama (Fotografía cortesía de iStock).

El mercado mundial de imagenología mamaria valdrá 4.600 millones de dólares en el año 2023

Se proyecta que el mercado mundial de imágenes mamarias crezca a una TCAC de 8,0% desde 3.100 millones de dólares en 2018 para llegar a 4.600 millones de dólares en 2023, impulsado principalmente por los... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.