Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Investigadores usan aprendizaje automático para aumentar la resolución de las imágenes por TCO

Por el equipo editorial de MedImaging en español
Actualizado el 09 Oct 2019
Imagen: Una técnica nueva, llamada tomografía de refracción de coherencia óptica (TRCO), podría mejorar las imágenes médicas obtenidas en la industria multimillonaria de la TCO para campos médicos que van desde la cardiología hasta la oncología (Fotografía cortesía de Pixabay).
Imagen: Una técnica nueva, llamada tomografía de refracción de coherencia óptica (TRCO), podría mejorar las imágenes médicas obtenidas en la industria multimillonaria de la TCO para campos médicos que van desde la cardiología hasta la oncología (Fotografía cortesía de Pixabay).
Los ingenieros biomédicos de la Universidad de Duke (Durham, NC, EUA) idearon un método para aumentar la resolución de la tomografía de coherencia óptica (TCO) a una escala de una sola micra en todas las direcciones. La nueva técnica, llamada tomografía de refracción de coherencia óptica (TRCO), podría mejorar las imágenes médicas obtenidas en la industria multimillonaria de la TCO para campos médicos que van desde la cardiología hasta la oncología.

La TCO es una tecnología de imagenología análoga a la ecografía, que utiliza luz en lugar de ondas de sonido. Una sonda dispara un haz de luz sobre un tejido y, en función de los retrasos de las ondas de luz a medida que se recuperan, se determina los límites de las características internas. Para obtener una imagen completa de estas estructuras, el proceso se repite en muchas posiciones horizontales sobre la superficie del tejido que se escanea.

Dado que la TCO proporciona una resolución de profundidad mucho mejor que la dirección lateral, funciona mejor cuando estas características contienen principalmente capas planas. Cuando los objetos dentro del tejido tienen formas irregulares, las características se vuelven borrosas y la luz se refracta en diferentes direcciones, reduciendo la calidad de la imagen. Los intentos anteriores para crear imágenes de TCO con alta resolución lateral se basaron en la holografía, que mide minuciosamente el complejo campo electromagnético reflejado desde el objeto. Si bien esto se ha demostrado, el método requiere que la muestra y el aparato de imagenología permanezcan perfectamente quietos hasta la escala nanométrica durante toda la medición.

Sin embargo, los ingenieros biomédicos de la Universidad de Duke tomaron un enfoque diferente. En lugar de confiar en la holografía, los investigadores combinaron las imágenes de TCO adquiridas desde múltiples ángulos para extender la resolución de profundidad a la dimensión lateral. Sin embargo, cada imagen TCO individual se distorsiona por la refracción de la luz a través de irregularidades en las células y otros componentes del tejido. Con el fin de poder compensar estos caminos alterados al compilar las imágenes finales, los investigadores debían modelar con exactitud la forma cómo se dobla la luz a medida que pasa a través de la muestra.

Para lograr esta hazaña computacional, los ingenieros biomédicos desarrollaron un método utilizando la “optimización basada en gradiente” para inferir el índice de refracción dentro de las diferentes áreas de tejido en base a las imágenes de múltiples ángulos. Este enfoque determina la dirección en la que se debe ajustar la propiedad dada, en este caso, el índice de refracción, para crear una mejor imagen. Después de varias iteraciones, el algoritmo crea un mapa del índice de refracción del tejido que compensa mejor las distorsiones de la luz. El método se implementó utilizando TensorFlow, una biblioteca de software popular creada por Google para aplicaciones de aprendizaje profundo.

Para los experimentos de prueba de concepto, los investigadores tomaron muestras de tejido como la vejiga o la tráquea de un ratón, las colocaron en un tubo y rotaron las muestras 360 grados debajo de un escáner de TCO. El algoritmo creó con éxito un mapa del índice de refracción de cada muestra, aumentando la resolución lateral del escaneo en más de un 300% y reduciendo el ruido de fondo en la imagen final. Si bien el estudio utilizó muestras ya extraídas del cuerpo, los investigadores creen que se puede adaptar la TRCO para trabajar en un organismo vivo.

“Una de las muchas razones por las que este trabajo me parece emocionante es que pudimos tomar prestadas herramientas de la comunidad de aprendizaje automático y aplicarlas no solo para procesar imágenes de TCO, sino también para combinarlas de una manera novedosa y extraer nueva información”, dijo el investigador, Kevin Zhou. “Creo que hay muchas aplicaciones de estas bibliotecas de aprendizaje profundo como TensorFlow y PyTorch, fuera de las tareas estándar como la clasificación y segmentación de las imágenes”.

Enlace relacionado:
Universidad de Duke

Digital Radiographic System
OMNERA 300M
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Mobile X-Ray System
K4W
Portable X-ray Unit
AJEX140H

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: la herramienta basada en ultrasonido NEOSONICS identifica de forma no invasiva los casos de meningitis infantil (foto cortesía de Newborn Solution)

Herramienta no invasiva basada en ultrasonido detecta con precisión la meningitis infantil

La meningitis, una inflamación de las membranas que rodean el cerebro y la médula espinal, puede ser mortal en bebés si no se diagnostica y trata a tiempo. Incluso con tratamiento, puede dejar daños permanentes,... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.