Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Técnica de inteligencia artificial identifica casos de tuberculosis

Por el equipo editorial de MedImaging en español
Actualizado el 09 May 2017
Print article
Imagen: Una radiografía de tórax de un paciente con TB activa, y una radiografía con una superposición de mapa de calor que muestra algunos de los resultados del análisis usando la inteligencia artificial (Fotografía cortesía de la RSNA).
Imagen: Una radiografía de tórax de un paciente con TB activa, y una radiografía con una superposición de mapa de calor que muestra algunos de los resultados del análisis usando la inteligencia artificial (Fotografía cortesía de la RSNA).
Los investigadores han encontrado que pueden utilizar una técnica de inteligencia artificial, llamada aprendizaje profundo, para identificar casos de tuberculosis en los exámenes de rayos X de tórax con una tasa de exactitud neta de 96%.
 
Según la Organización Mundial de la Salud (OMS), alrededor de 1,8 millones de personas murieron de tuberculosis en 2016. Un simple examen radiológico de tórax puede ayudar a los radiólogos a identificar la enfermedad, pero muchos pacientes de tuberculosis viven en áreas remotas sin acceso a radiólogos expertos, que puedan interpretar las imágenes, y diagnosticar la enfermedad.
 
El estudio fue realizado por investigadores del Hospital Universitario Thomas Jefferson (TJUH, Filadelfia, PA, EUA), quienes entrenaron modelos de inteligencia artificial para identificar la TB en las radiografías de tórax. El objetivo de la investigación fue ayudar a la detección y evaluación de pacientes en áreas prevalentes de TB, que carecen de acceso a radiólogos. El estudio fue publicado en la edición digital del 25 de abril de 2017, de la revista Radiology.
 
Los investigadores usaron 1.007 exámenes de rayos X, de pacientes con y sin TB activa, para el estudio. Los conjuntos de datos múltiples de rayos X positivos para la TB y negativos para la TB, fueron usados para entrenar dos modelos diferentes de una Red Neural Convulsionada Profunda (DCNN, por sus siglas en inglés) llamados AlexNet y GoogLeNet. Los investigadores descubrieron que el modelo de Inteligencia Artificial (IA) de mejor desempeño fue cuando se usaron juntos AlexNet y GoogLeNet, lo que dio como resultado una exactitud neta del 96%.
 
El coautor del estudio, Paras Lakhani, MD en el TJUH, dijo: “Hay un tremendo interés en la inteligencia artificial, tanto dentro como fuera del campo de la medicina. Una solución de inteligencia artificial que pudiera interpretar las radiografías para detectar la presencia de TB de una manera rentable podría ampliar el alcance de la identificación y el tratamiento temprano en las naciones en desarrollo. La exactitud de los modelos de aprendizaje profundo es emocionante. La aplicabilidad para la TB es importante porque es una enfermedad para la cual tenemos opciones de tratamiento. Esperamos aplicarlo de forma prospectiva, en un entorno real. Una solución de inteligencia artificial que utiliza imágenes de tórax puede desempeñar un papel importante en la lucha contra la tuberculosis”.
 
Miembro Oro
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Breast Imaging Workstation
SecurView
New
Mobile Digital X-Ray System
SOLTUS 500
New
Illuminator
Trimline Basic

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: La IA analiza imágenes térmicas de teléfonos inteligentes para producir predicciones del riesgo de cáncer de mama (foto cortesía de Thermaiscan Technology)

Solución portátil de imágenes térmicas impulsada por IA podría complementar la mamografía

El cáncer de mama sigue siendo un importante problema de salud mundial para las mujeres, con tasas de incidencia y mortalidad cada vez mayores. En muchos países de ingresos bajos y medianos,... Más

Ultrasonido

ver canal
Imagen: El profesor Nassir Navab de TUM realiza una investigación sobre ultrasonido robótico (foto cortesía de Fabian Vogel/Tum)

Sistemas robóticos de ultrasonido podrían ayudar a los médicos durante cirugías

La tecnología de ultrasonido se introdujo por primera vez en el diagnóstico médico hace 60 años, y hace 20 años se introdujo la primera máquina de ultrasonido... Más

Medicina Nuclear

ver canal
Imagen:  Los investigadores han identificado un nuevo biomarcador de imágenes para las respuestas tumorales a la terapia con ICI (foto cortesía de 123RF)

Nuevo biomarcador PET predice el éxito de inmunoterapia con inhibidores de puntos de control

Las inmunoterapias, como los inhibidores de puntos de control (ICI, sus siglas en inglés), han mostrado resultados clínicos prometedores en el tratamiento del melanoma, el cáncer de... Más

Imaginología General

ver canal
La imagen muestra similitudes entre las áreas de la función pulmonar obtenidas en el mismo paciente con CTFI y SPECT (foto cortesía de Corewell Health)

Software de imágenes mejora diagnóstico pulmonar en pacientes alérgicos al medio de contraste

Para hasta el 30 % de los pacientes que no pueden usar medios de contraste médicos debido a alergias u otras condiciones de salud, se puede retrasar el diagnóstico de problemas pulmonares... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.