Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.
Please note that the MedImaging website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
Ampronix,  Inc

Técnica de inteligencia artificial identifica casos de tuberculosis

Por el equipo editorial de Medimaging en español
Actualizado el 09 May 2017
Print article
Imagen: Una radiografía de tórax de un paciente con TB activa, y una radiografía con una superposición de mapa de calor que muestra algunos de los resultados del análisis usando la inteligencia artificial (Fotografía cortesía de la RSNA).
Imagen: Una radiografía de tórax de un paciente con TB activa, y una radiografía con una superposición de mapa de calor que muestra algunos de los resultados del análisis usando la inteligencia artificial (Fotografía cortesía de la RSNA).
Los investigadores han encontrado que pueden utilizar una técnica de inteligencia artificial, llamada aprendizaje profundo, para identificar casos de tuberculosis en los exámenes de rayos X de tórax con una tasa de exactitud neta de 96%.
 
Según la Organización Mundial de la Salud (OMS), alrededor de 1,8 millones de personas murieron de tuberculosis en 2016. Un simple examen radiológico de tórax puede ayudar a los radiólogos a identificar la enfermedad, pero muchos pacientes de tuberculosis viven en áreas remotas sin acceso a radiólogos expertos, que puedan interpretar las imágenes, y diagnosticar la enfermedad.
 
El estudio fue realizado por investigadores del Hospital Universitario Thomas Jefferson (TJUH, Filadelfia, PA, EUA), quienes entrenaron modelos de inteligencia artificial para identificar la TB en las radiografías de tórax. El objetivo de la investigación fue ayudar a la detección y evaluación de pacientes en áreas prevalentes de TB, que carecen de acceso a radiólogos. El estudio fue publicado en la edición digital del 25 de abril de 2017, de la revista Radiology.
 
Los investigadores usaron 1.007 exámenes de rayos X, de pacientes con y sin TB activa, para el estudio. Los conjuntos de datos múltiples de rayos X positivos para la TB y negativos para la TB, fueron usados para entrenar dos modelos diferentes de una Red Neural Convulsionada Profunda (DCNN, por sus siglas en inglés) llamados AlexNet y GoogLeNet. Los investigadores descubrieron que el modelo de Inteligencia Artificial (IA) de mejor desempeño fue cuando se usaron juntos AlexNet y GoogLeNet, lo que dio como resultado una exactitud neta del 96%.
 
El coautor del estudio, Paras Lakhani, MD en el TJUH, dijo: “Hay un tremendo interés en la inteligencia artificial, tanto dentro como fuera del campo de la medicina. Una solución de inteligencia artificial que pudiera interpretar las radiografías para detectar la presencia de TB de una manera rentable podría ampliar el alcance de la identificación y el tratamiento temprano en las naciones en desarrollo. La exactitud de los modelos de aprendizaje profundo es emocionante. La aplicabilidad para la TB es importante porque es una enfermedad para la cual tenemos opciones de tratamiento. Esperamos aplicarlo de forma prospectiva, en un entorno real. Una solución de inteligencia artificial que utiliza imágenes de tórax puede desempeñar un papel importante en la lucha contra la tuberculosis”.
 

Print article
Radcal

Canales

Radiografía

ver canal
Imagen: Ejemplos de dosímetros de extremidades Thermo Fisher (Fotografía cortesía de Thermo Fisher Scientific).

Un servicio nuevo de monitorización simplifica los programas de seguridad de la radiación

Un nuevo servicio de monitorización de dosimetría permite a las instalaciones con requisitos de seguridad radiológica simplificar la gestión de sus programas de seguridad. Los Servicios de Dosimetría... Más

Ultrasonido

ver canal
Imagen: Un estudio nuevo afirma que el software de inteligencia artificial (IA) puede ayudar a identificar la información de los marcapasos más rápido que los métodos actuales (Fotografía cortesía de iStock).

La IA mejora la identificación mediante rayos X de los marcapasos

Según un estudio nuevo, el software de inteligencia artificial (IA) puede ayudar a determinar la marca y el modelo de los dispositivos de ritmo cardíaco (DRC) implantados con mayor exactitud y rapidez... Más

Medicina Nuclear

ver canal
Imagen: La plataforma de radiocirugía giroscópica ZAP-X (Fotografía cortesía de ZAP Surgical Systems).

Una plataforma de radiocirugía giroscópica hace la ablación de tumores de cerebro

Una plataforma nueva de radioterapia (RT) administra radiocirugía estereotáctica de dosis altas (SRS) para extirpar de forma no invasiva los tumores cerebrales y otras afecciones intracraneales seleccionadas.... Más

Imaginología General

ver canal
Imagen: El algoritmo del Dr. Stefan Skare mejora los tiempos de adquisición de las resonancias magnéticas (Fotografía cortesía de Catarina Thepper/KI).

Un algoritmo novedoso acorta los exámenes de resonancia magnética a casi un minuto

Un estudio nuevo afirma que una técnica nueva de resonancia magnética (RM) de contraste múltiple puede reducir el tiempo necesario para completar un examen a aproximadamente 70 segundos.... Más

Industria

ver canal
Imagen: Se proyecta que el mercado global de protección contra la radiación médica alcance un valor de mil millones de dólares para fines de 2022 (Fotografía cortesía de TMR).

El mercado de protección contra la radiación médica será superior a los mil millones de dólares en 2022

Se proyecta que el mercado global de protección contra la radiación médica registre una tasa de crecimiento anual compuesta de 4,8% durante el período de pronóstico de 2017 a 2022 para alcanzar un valor... Más
Copyright © 2000-2019 Globetech Media. All rights reserved.