Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Técnica de inteligencia artificial identifica casos de tuberculosis

Por el equipo editorial de MedImaging en español
Actualizado el 09 May 2017
Imagen: Una radiografía de tórax de un paciente con TB activa, y una radiografía con una superposición de mapa de calor que muestra algunos de los resultados del análisis usando la inteligencia artificial (Fotografía cortesía de la RSNA).
Imagen: Una radiografía de tórax de un paciente con TB activa, y una radiografía con una superposición de mapa de calor que muestra algunos de los resultados del análisis usando la inteligencia artificial (Fotografía cortesía de la RSNA).
Los investigadores han encontrado que pueden utilizar una técnica de inteligencia artificial, llamada aprendizaje profundo, para identificar casos de tuberculosis en los exámenes de rayos X de tórax con una tasa de exactitud neta de 96%.
 
Según la Organización Mundial de la Salud (OMS), alrededor de 1,8 millones de personas murieron de tuberculosis en 2016. Un simple examen radiológico de tórax puede ayudar a los radiólogos a identificar la enfermedad, pero muchos pacientes de tuberculosis viven en áreas remotas sin acceso a radiólogos expertos, que puedan interpretar las imágenes, y diagnosticar la enfermedad.
 
El estudio fue realizado por investigadores del Hospital Universitario Thomas Jefferson (TJUH, Filadelfia, PA, EUA), quienes entrenaron modelos de inteligencia artificial para identificar la TB en las radiografías de tórax. El objetivo de la investigación fue ayudar a la detección y evaluación de pacientes en áreas prevalentes de TB, que carecen de acceso a radiólogos. El estudio fue publicado en la edición digital del 25 de abril de 2017, de la revista Radiology.
 
Los investigadores usaron 1.007 exámenes de rayos X, de pacientes con y sin TB activa, para el estudio. Los conjuntos de datos múltiples de rayos X positivos para la TB y negativos para la TB, fueron usados para entrenar dos modelos diferentes de una Red Neural Convulsionada Profunda (DCNN, por sus siglas en inglés) llamados AlexNet y GoogLeNet. Los investigadores descubrieron que el modelo de Inteligencia Artificial (IA) de mejor desempeño fue cuando se usaron juntos AlexNet y GoogLeNet, lo que dio como resultado una exactitud neta del 96%.
 
El coautor del estudio, Paras Lakhani, MD en el TJUH, dijo: “Hay un tremendo interés en la inteligencia artificial, tanto dentro como fuera del campo de la medicina. Una solución de inteligencia artificial que pudiera interpretar las radiografías para detectar la presencia de TB de una manera rentable podría ampliar el alcance de la identificación y el tratamiento temprano en las naciones en desarrollo. La exactitud de los modelos de aprendizaje profundo es emocionante. La aplicabilidad para la TB es importante porque es una enfermedad para la cual tenemos opciones de tratamiento. Esperamos aplicarlo de forma prospectiva, en un entorno real. Una solución de inteligencia artificial que utiliza imágenes de tórax puede desempeñar un papel importante en la lucha contra la tuberculosis”.
 
High-Precision QA Tool
DEXA Phantom
Ultrasound Table
Women’s Ultrasound EA Table
Ultrasonic Pocket Doppler
SD1
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Canales

Radiografía

ver canal
Imagen: la prueba de detección \"dos por uno\" podría ayudar a detectar las principales causas de muerte de mujeres en todo el mundo (foto cortesía de Shutterstock)

Algoritmo de IA utiliza mamografías para predecir con precisión el riesgo cardiovascular en mujeres

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte en mujeres a nivel mundial, responsables de aproximadamente nueve millones de muertes al año. A pesar de esta carga, los síntomas... Más

Ultrasonido

ver canal
Imagen: el parche de ultrasonido realiza simultáneamente imágenes de ultrasonido y medición de la presión arterial de ambas arterias carótidas (Fotografía cortesía de KIST)

Parche de ultrasonido desechable supera el rendimiento de los dispositivos existentes

Los dispositivos portátiles de ultrasonido se utilizan ampliamente en el diagnóstico, el monitoreo de la rehabilitación y la telemedicina. Sin embargo, la mayoría de los modelos... Más

Medicina Nuclear

ver canal
Imagen: los cristales de perovskita se cultivan en condiciones cuidadosamente controladas a partir de la masa fundida (foto cortesía de Mercouri Kanatzidis/Northwestern University)

Nueva cámara permite ver dentro del cuerpo humano para mejorar el escaneo y diagnóstico

Las exploraciones de medicina nuclear, como la tomografía computarizada por emisión de fotón único (SPECT), permiten a los médicos observar la función cardíaca,... Más

Imaginología General

ver canal
Imagen: Concepto de los SCNP fotosensibles (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

Nuevas nanopartículas ultrapequeñas y sensibles a la luz podrían servir como agentes de contraste

Las tecnologías de imagen médica enfrentan desafíos constantes para capturar vistas precisas y detalladas de los procesos internos, especialmente en enfermedades como el cáncer,... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.